Synlett 2010(19): 2931-2935  
DOI: 10.1055/s-0030-1259042
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Olefin Cross-Metathesis with 3-Nitropropene

Tomasz Wdowika,b, Cezary Samojłowicza, Magdalena Jawiczuka, Andrzej Zareckia, Karol Grela*a
a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
Fax: +48(22)3432109; e-Mail: [email protected];
b Faculty of Chemistry, Warsaw University of Technology (Politechnika), Noakowskiego 3, 00-664 Warsaw, Poland
Further Information

Publication History

Received 23 September 2010
Publication Date:
11 November 2010 (online)

Abstract

The synthesis of functionalized allylic nitro compounds via cross-metathesis with a new cross-metathesis partner, 3-nitropropene, is reported. The reaction of various terminal olefins with 3-nitropropene, promoted by 5 mol% of standard commercially available ruthenium pre-catalysts in the presence of triphenyl ­borate, provided the substituted β,γ-nitroolefins in moderate to high yields. These results render the catalytic olefin cross-metathesis as a mild and selective method for the synthesis of allylic nitro compounds.

    References and Notes

  • For selected reviews on catalytic cross-metathesis, see:
  • 1a Blechert S. Connon SJ. Angew. Chem. Int. Ed.  2003,  42:  1900 
  • 1b Vernall AJ. Abell AD. Aldrichimica Acta  2003,  36:  93 
  • 1c For industrial applications, see: Pederson RL. Fellows IM. Ung TA. Ishihara H. Hajela SP. Adv. Synth. Catal.  2002,  344:  728 
  • 1d For a review on metathesis of heteroatom-substituted olefins, see: Van de Weghe P. Bisseret P. Blanchard N. Eustache J.
    J. Organomet. Chem.  2006,  691:  5078 
  • 2a Grubbs RH. Handbook of Metathesis   Wiley-VCH; Weinheim Germany: 2003. 
  • 2b Hoveyda AH. Gillingham DG. Van Veldhuizen JJ. Kataoka O. Garber SB. Kingsbury JS. Harrity JPA. Org. Biomol. Chem.  2004,  2: 
  • 2c Samojowicz C. Bieniek M. Grela K. Chem. Rev.  2009,  109:  3708 
  • 2d Michrowska A. Bujok R. Harutyunyan S. Sashuk V. Dolgonos G. Grela K. J. Am. Chem. Soc.  2004,  126:  9318 
  • 2e Bieniek M. Bujok R. Cabaj M. Lugan N. Lavigne G. Arlt D. Grela K. J. Am. Chem. Soc.  2006,  128:  13652 
  • 3a Randl S. Gessler S. Wakamatsu H. Blechert S. Synlett  2001,  432 
  • 3b Rivard M. Blechert S. Eur. J. Org. Chem.  2003,  68:  2225 
  • 3c Bruneau C. Fischmeister C. Miao X. Malacea R. Dixneuf PH. Eur. J. Lipid Sci. Technol.  2010,  112: 
  • 4a Chatterjee AK. Choi T.-L. Grubbs RH. Synlett  2001,  1034 
  • 4b Lera M. Hayes CJ. Org. Lett.  2001,  3:  2765 
  • 4c Stoianova DS. Hanson PR. Org. Lett.  2000,  2:  1769 
  • 5a Vinokurov N. Michrowska A. Szmigielska A. Drzazga Z. Wójciuk G. Demchuk OM. Grela K. Pietrusiewicz KM. Butenschön H. Adv. Synth. Catal.  2006,  348:  931 
  • 5b Bisaro F. Gouverneur V. Tetrahedron  2005,  61:  2395 
  • 6a Imhof S. Randl S. Blechert S. Chem. Commun.  2001,  1692 
  • 6b Eignerová B. Dračínský M. Kotora M. Eur. J. Org. Chem.  2008,  4493 
  • 7a Grela K. Bieniek M. Tetrahedron Lett.  2001,  42:  6425 
  • 7b Grela K. Michrowska A. Bieniek M. Kim M. Klajn R. Tetrahedron  2003,  59:  4525 
  • 7c Bieniek M. Kooda D. Grela K. Org. Lett.  2006,  8:  5689 
  • 8 Mikus A. Sashuk V. Kūdziorek M. Samojowicz C. Ostrowski S. Grela K. Synlett  2005,  1142 
  • 9a Sashuk V. Samojowicz C. Szadkowska A. Grela K. Chem. Commun.  2008,  2468 
  • 9b Macnaughtan ML. Gary JB. Gerlach DL. Johnson MJA. Kampf JW. Organometallics  2009,  28:  2880 
  • 10 For selectivity in olefin cross-metathesis, see: Chatterjee AK. Choi T.-L. Sanders DP. Grubbs RH. J. Am. Chem. Soc.  2003,  125:  11360 
  • 11 Marsh GP. Parsons PJ. McCarthy C. Corniquet XG. Org. Lett.  2007,  9:  2613 
  • 12a Ono N. The Nitro Group in Organic Synthesis   Wiley-VCH; Weinheim Germany: 2001. 
  • 12b Ballini R. Bosica G. Fiorini D. Palmieri A. Pietrini M. Chem. Rev.  2005,  105:  933 
  • For synthesis of β,γ-nitroolefines, see:
  • 13a Samojlovich TI. Poljanskaja AS. Perekalin VV. Zh. Org. Khim.  1967,  3:  579 
  • 13b Bloom AJ. Mellor JM. Tetrahedron Lett.  1986,  27:  873 
  • 13c Seebach D. Henning R. Lehr F. Angew. Chem.  1978,  90:  479 
  • 13d Reynolds R. Adkins H. J. Am. Chem. Soc.  1929,  51:  279 
  • 13e Sychkova LD. Kalinkina OL. Shavarow JuS. Zh. Org. Khim.  1981,  17:  1435 
  • 13f Piotrowska H. Bull. Acad. Polon, Sci., Ser. Sci. Chim.  1971,  19:  595 
  • 13g Stockij AA. Nowackaja NI. Okulovskaja NV. Kirichenko VV. Postnikova IJ. Zh. Org. Khim.  1980,  16:  1162 
  • 13h Tissot M. Müller D. Belot S. Alexakis A. Org. Lett.  2010,  12:  2770 
  • For selected reactions for replacement of nitro group in allylic position, see:
  • 14a Tamura R. Hegedus LS. J. Am. Chem. Soc.  1982,  104:  3727 
  • 14b Ono N. Hamamoto I. Kaji A. J. Chem. Soc., Chem. Commun.  1982,  821 
  • 14c Ono N. Hamamoto I. Kaji A. Bull. Chem. Soc. Jpn.  1985,  58:  1863 
  • 14d Tamura R. Hayashi K. Kai Y. Oda D. Tetrahedron Lett.  1984,  25:  4437 
  • 14e Ono N. Hamamoto I. Kawai T. Kaji A. Kakihara M. Bull. Chem. Soc. Jpn.  1986,  59:  405 
  • 14f Ono N. Hamamoto I. Kaji A. J. Chem. Soc., Chem. Commun.  1984,  274 
  • 14g Carpino LA. Cohen BJ. Stephens KE. Sadat-Aalaee SY. Tien J.-H. Langridge DC. J. Org. Chem.  1986,  51:  3734 
  • 14h Ono N. Hamamoto I. Yanai T. Kaji A. J. Chem. Soc., Chem. Commun.  1985,  523 
  • 15 Ono N. Hamamoto I. Kamimura A. Kaji A. Tamura R. Synthesis  1987,  258 
  • 16 Bieniek M. Michrowska A. Usanov DL. Grela K. Chem. Eur. J.  2008,  14:  806 
  • For fluorinated aromatic hydrocarbons in olefin metathesis, see:
  • 17a Samojowicz C. Bieniek M. Zarecki A. Kadyrov R. Grela K. Chem. Commun.  2008,  6282 
  • 17b Jacoby M. Chem. Eng. News  2008,  86:  36 
  • 17c Parker D. Chem. Sci.  2009,  6:  C4 
  • 17d Rost D. Porta M. Gessler S. Blechert S. Tetrahedron Lett.  2008,  49:  5968 
  • For chelation of ruthenium active species in olefin metathesis reactions, see:
  • 18a Fürstner A. Langemann K.
    J. Am. Chem. Soc.  1997,  119:  9130 
  • 18b Ghosh AK. Cappiello J. Shin D. Tetrahedron Lett.  1998,  39:  4651 
  • 18c Lin YA. Chalker JM. Floyd N. Bernardes JLG. Davis BG. J. Am. Chem. Soc.  2008,  130:  9642 
  • 18d Vedrenne E. Dupont H. Oualef S. Elkaim L. Grimaud L. Synlett  2005,  670 
  • 18e Yang Q. Xiao W.-J. Yu Z. Org. Lett.  2005,  7:  871 
  • 21 Lelais G. MacMillan DWC. Aldrichimica Acta  2006,  39:  79 
19

General Setup for CM Reactions with 3-Nitropropene: Reactions were carried out under argon in pre-dried glassware using Schlenk techniques. Solvents were dried by distillation over CaH2 under argon and stored under an argon atmosphere. Olefin metathesis pre-catalysts were obtained from Sigma-Aldrich (1b, 1c) and Apeiron Catalysts (1d, www.apeiron-catalysts.com). All other commercially available chemicals were used as received. Comparative CM experiments (refer to Tables  [¹] and  [²] ) were conducted with an internal standard (tetradecane) and analyzed by GC. The responses of the FID detector were calibrated using 3a/tetradecane and 4a/tetradecane standard solutions. Each CM experiment was repeated at least twice.

20

Representative Procedure of CM Reaction. To a solution of alkene 3b (1.23 mmol, 240.8 mg) and 3-nitropropene (2.63 mmol, 228.6 mg) in CH2Cl2 (5 mL), triphenyl borate (0.30 mmol, 87.6 mg, 25 mol%) was added. Next, ruthenium pre-catalyst 1d was added in one portion (0.06 mmol, 40.8 mg, 5 mol%) and the resulting mixture was refluxed for 5 h under an argon atmosphere. The solvent was removed under reduced pressure. The crude product was purified by flash chromatography (cyclohexane-EtOAc = 20:1) to yield the analytically pure product 4b as an yellow oil (0.89 mmol, 227.4 mg, 73%) as a mixture of E/Z isomers (in 5.2:1 ratio). Analytical data: ¹H NMR (400 MHz, CDCl3; E-isomer): δ = 5.92 (dtt, J = 15.3, 6.8, 1.0 Hz, 1 H), 5.74 (dtt, J = 15.3, 7.2, 1.4 Hz, 1 H), 4.87 (dd, J = 7.2, 0.8 Hz, 2 H), 2.09-2.14 (m, 2 H), 1.26 (m, 20 H), 0.88 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3; E-isomer): δ = 141.9 (CH), 118.4 (CH), 77.7 (CH2), 32.3 (CH2), 31.9 (CH2), 29.6 (CH2), 29.64 (CH2), 29.61 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.13 (CH2), 29.07 (CH2), 28.5 (CH2), 22.7 (CH2), 14.1 (Me).
MS (ESI): m/z = 278 [M + Na]+. IR (neat): 2925, 2854, 1557, 1467, 1375, 970 cm. Anal. Calcd for C15H29NO2: C, 70.54; H, 11.45; N, 5.48. Found: C, 70.41; H, 11.57; N, 5.42.