Synlett 2010(19): 2887-2890  
DOI: 10.1055/s-0030-1259039
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Regioselective Synthesis of Optically Active Trifluoromethyl Group Substituted Allylic Amines by Palladium-Catalyzed Allylic Amination

Takuya Hirakawa, Kazunori Ikeda, Hiroshi Ogasa, Motoi Kawatsura*, Toshiyuki Itoh*
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama, Tottori 680-8552, Japan
Fax: +81(857)315179; e-Mail: [email protected]; e-Mail: [email protected];
Further Information

Publication History

Received 15 September 2010
Publication Date:
10 November 2010 (online)

Abstract

We succeeded in the regioselective synthesis of chiral trifluoromethyl group substituted allylic amines from chiral allyl acetate using two types of palladium catalysts. Furthermore, we found that the kinetic resolution had occurred during the isomerization step from the γ-type product to the α-type product by the [Pd(C3H5)(cod)]BF4/(S)-BINAP catalyst.

    References and Notes

  • 1a Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century   John Wiley and Sons; Chichester: 2004. 
  • 1b Tsuji J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis   Wiley and Sons; Chichester: 2000. 
  • 1c Trost BM. Lee CB. In Catalytic Asymmetric Synthesis II   Ojima I. Wiley-VCH; Weinheim: 2000. 
  • 1d Pfaltz A. Lautens M. In Comprehensive Asymmetric Catalysis I-III   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 1e Hayashi T. In Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; Weinheim: 1993. 
  • 2a Jørgensen KA. In Modern Amination Methods   Ricci A. Wiley-VCH; Weinheim: 2000.  Chap. 1. p.1 
  • 2b Johannsen M. Jørgensen KA. Chem. Rev.  1998,  98:  1689 
  • Selected examples of transition-metal-catalyzed allylic aminations of allylic esters: for [Pd]
  • 3a Dubovyk I. Watson IDG. Yudin AK. J. Am. Chem. Soc.  2007,  129:  14172 
  • 3b Johns AM. Liu Z. Hartwig JF. Angew. Chem. Int. Ed.  2007,  46:  7259 
  • 3c Faller JW. Wilt JC. Org. Lett.  2005,  7:  633 ; and references therein
  • For [Ir]:
  • 3d Takeuchi R. Ue N. Tanabe K. Yamashita K. Shiga N. J. Am. Chem. Soc.  2001,  123:  9525 
  • 3e Ohmura T. Hartwig JF. J. Am. Chem. Soc.  2002,  124:  15164 
  • 3f Leitner A. Shekhar S. Pouy MJ. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  15506 
  • 3g Polet D. Alexakis A. Tissot-Croset K. Corminboeuf C. Ditrich K. Chem. Eur. J.  2006,  12:  3596 
  • 3h Weihofen R. Tverskoy O. Helmchen G. Angew. Chem. Int. Ed.  2006,  45:  5546 ; and references therein
  • For [Rh]:
  • 3i Evans PA. Robinson JE. Nelson JD. J. Am. Chem. Soc.  1999,  121:  6761 
  • 3j Evans PA. Robinson JE. Nelson JD. J. Am. Chem. Soc.  1999,  121:  12214 
  • For [Ru]:
  • 3k Morisaki Y. Kondo T. Mitsudo T. Organometallics  1999,  18:  4742 
  • 3l Matsushima Y. Onitsuka K. Kondo T. Mitsudo T. Takahashi S. J. Am. Chem. Soc.  2001,  123:  10405 
  • 3m Matsushima Y. Onitsuka K. Takahashi S. Organometallics  2004,  23:  3763 
  • 3n Kawatsura M. Ata F. Hirakawa T. Hayase S. Itoh T. Tetrahedron Lett.  2008,  49:  4873 ; and references cited therein
  • Examples of allylic substitutions of fluorinated allyl substrates:
  • 4a Hanzawa Y. Ishizawa S. Kobayashi Y. Chem. Pharm. Bull.  1988,  36:  4209 
  • 4b Hanzawa Y. Ishizawa S. Ito H. Kobayashi Y. Taguchi T. J. Chem. Soc., Chem. Commun.  1990,  394 
  • 4c Fish PV. Reddy SP. Lee CH. Johnson WS. Tetrahedron Lett.  1992,  33:  8001 
  • 4d Konno T. Ishihara T. Yamanaka H. Tetrahedron Lett.  2000,  41:  8467 
  • 4e Okano T. Matsubara H. Kusukawa T. Fujita M. J. Organomet. Chem.  2003,  676:  43 
  • 4f Konno T. Takehana T. Ishihara T. Yamanaka H. Org. Biomol. Chem.  2004,  2:  93 
  • 4g Konno T. Takehana T. Mishima M. Ishihara T. J. Org. Chem.  2006,  71:  3545 
  • 4h Kawatsura M. Wada S. Hayase S. Itoh T. Synlett  2006,  2483 
  • 5 Konno T. Nagata K. Ishihara T. Yamanaka H. J. Org. Chem.  2002,  67:  1768 
  • 6 Kawatsura M. Hirakawa T. Tanaka T. Ikeda D. Hayase S. Itoh T. Tetrahedron Lett.  2008,  49:  2450 
  • Examples of net retention mechanism in the palladium-catalyzed allylic substitutions:
  • 7a Hayashi T. Hagihara T. Konishi M. Kumada M. J. Am. Chem. Soc.  1983,  105:  7767 
  • 7b Hayashi T. Yamamoto A. Hagihara T. J. Org. Chem.  1986,  51:  723 
  • 7c Trost BM. Toste FD. J. Am. Chem. Soc.  1999,  121:  4545 
  • Selected examples of kinetic resolution in the palladium-catalyzed allylic substitutions of disubstituted symmetrical or monosubstituted allylic esters:
  • 12a Cook GR. Curr. Org. Chem.  2000,  4:  869 
  • 12b Robinson DEJE. Bull SD. Tetrahedron: Asymmetry  2003,  14:  1407 
  • 12c Longmire JM. Wang B. Zhang X. Tetrahedron Lett.  2000,  41:  5435 
  • 12d Reetz MT. Sostmann S. J. Organomet. Chem.  2000,  603:  105 
  • 12e Gilbertson SR. Lan P. Org. Lett.  2001,  3:  2237 
  • 12f Cook GR. Sankaranarayanan S. Org. Lett.  2001,  3:  3531 
  • 12g Lüssem BJ. Gais H.-J. J. Org. Chem.  2004,  69:  4041 
  • 12h Castillo AB. Favier I. Teuma E. Castillón S. Godard C. Aghmiz A. Claver C. Gómez M. Chem. Commun.  2008,  6197 
  • 12i Hou XL. Zheng BH. Org. Lett.  2009,  11:  1789 ; and references cited therein
  • Examples of kinetic resolution in the palladium-catalyzed allylic substitutions of 1,3-disubstituted unsymmetrical allylic esters:
  • 13a Hayashi T. Yamamoto A. Ito Y.
    J. Chem. Soc., Chem. Commun.  1986,  1090 
  • 13b Faller JW. Wilt JC. Tetrahedron Lett.  2004,  45:  7613 
  • 15 Kagan HB. Fiaud JC. Top. Stereochem.  1988,  18:  249 
8

We observed the racemization of allylic amines took place by palladium catalysts. For example, the ee of (R)-4a decreased from 88% to 80% by Pd(OAc)2/DPPE at 60 ˚C for 12 h, and the ee of (S)-3a also decreased from 98% to 13% by [Pd(C3H5)(cod)]BF4/(S)-BINAP at 100 ˚C for 12 h.

9

We also confirmed the reaction with 10 mol% of [Pd(C3H5)(cod)]BF4/BIPHEP [2,2′-bis(diphenyl-phosphino)-1,1′-biphenyl] gave an α-product with 96% regioselectivity at 60 ˚C, but the ee decreased to 66%.

10

Typical Procedure for the [Pd(C 3 H 5 )(cod)]BF 4 /( S )-BINAP-Catalyzed Allylic Amination of ( S )-1 with 2a To a solution of [Pd(C3H5)(cod)]BF4 (7.0 mg, 0.021 mmol), (S)-BINAP (12.8 mg, 0.021 mmol), (S)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl acetate [(S)-1, 50 mg, 0.21 mmol] in dioxane (1.0 mL) was added morpholine (2a) and stirred at r.t. for 5 min and 40 ˚C for 12 h. The reaction mixture was quenched with brine and H2O (1 mL), then extracted with EtOAc (3 × 2 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The NMR yield (95%, trioxane as an internal standard) and ratio of 3a and 4a was determined by ¹H NMR of the crude materials.
Analytical Data of 3a
[α]D ²6 +69.2 [c 1.37, CHCl3; 99% ee (S)]. The enantiomeric purity was determined to be 99% ee by HPLC analysis with a Daicel CHIRALPAK AD-H [hexane-2-PrOH (99:1), flow: 1.0 mL/min, 254 nm, 35 ˚C, t major = 11.2 min, t minor = 13.0 min]. ¹H NMR (500 MHz, CDCl3): δ = 2.71-2.80 (m, 4 H), 3.60 (quin, J = 8.2 Hz, 1 H), 3.72 (t, J = 4.6 Hz, 4 H), 6.18 (dd, J = 8.2, 16.0 Hz, 1 H), 6.72 (d, J = 16.0 Hz, 1 H), 7.28-7.42 (m, 5 H). ¹³C NMR (125 MHz, CDCl3): δ = 50.4, 67.2, 68.6 (q, J CF = 27.5 Hz), 118.5, 125.7 (q, J CF = 285.0 Hz), 126.7, 128.5, 128.7, 135.7, 137.5. ¹9F NMR (470 MHz, CDCl3): δ = 92.0 (d, J = 8.2 Hz). HRMS (EI): m/z calcd for C14H16F3NO: 271.1184; found: 271.1195.

11

The absolute configuration of (S)-3a and (R)-4a were determined by the comparison of the X-ray crystallographic analysis of the products from the reaction of (S)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-yl acetate with 1-phenylpiperazine. See details in the Supporting Information.

14

Calculated by eeP and eeS. S = ln[(1 - c)(1 + eeP)]/ln[(1 - c) (1 - eeP)]. c = eeS/(eeS + eeP).