Synlett 2010(18): 2771-2774  
DOI: 10.1055/s-0030-1259011
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Preparation and Reactivity of Polystyrene-Supported Iodosylbenzene Sulfate: An Efficient Recyclable Oxidizing System

Jiang-Min Chen*a,b, Xiao-Mei Zengb, Viktor V. Zhdankin*b
a College of Biological and Chemical Engineering, Jiaxing University, 56 South Yuexiu Rd, Jiaxing 314001, P. R. of China
e-Mail: chemcjm@yahoo.com.cn;
b Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Dr., Duluth, MN 55812, USA
Fax: +1(218)7267394; e-Mail: vzhdanki@d.umn.edu;
Further Information

Publication History

Received 14 September 2010
Publication Date:
22 October 2010 (online)

Abstract

A new polymer-supported hypervalent iodine reagent, polystyrene-supported iodosylbenzene sulfate (PS-IBS), can be conveniently prepared by the reaction of polystyrene-supported (diacetoxyiodo)benzene (PS-DIB) with sodium bisulfate monohydrate under solvent-free conditions. This new recyclable reagent effects clean and efficient oxidation of a wide range of alcohols and sulfides to the corresponding carbonyl compounds or sulfoxides in high conversions under mild conditions. The final products are conveniently separated from the polymeric byproduct by simple filtration and isolated in good purity after evaporation of solvent. Recycling of the resin is possible with minimal loss of activity after several reoxidations.

    References and Notes

  • For books and selected reviews on hypervalent iodine chemistry, see:
  • 1a Varvoglis A. Hypervalent Iodine in Organic Synthesis   Academic Press; London: 1997. 
  • 1b Hypervalent Iodine Chemistry   Wirth T. Springer; Berlin: 2003. 
  • 1c Koser GF. Aldrichimica Acta  2001,  34:  89 
  • 1d Koser GF. Adv. Heterocycl. Chem.  2004,  86:  225 
  • 1e Moriarty RM. J. Org. Chem.  2005,  70:  2893 
  • 1f Zhdankin VV. Stang PJ. Chem. Rev.  2008,  108:  5299 
  • 1g Ladziata U. Zhdankin VV. ARKIVOC  2006,  (ix):  26 
  • 1h Ciufolini MA. Braun NA. Canesi S. Ousmer M. Chang J. Chai D. Synthesis  2007,  3759 
  • 1i Koser GF. Adv. Heterocycl. Chem.  2004,  86:  225 
  • 1j Zhdankin VV. Science of Synthesis   Vol. 31a:  Thieme; Stuttgart: 2007.  Chap. 31.4.1. p.161 
  • 1k Ladziata U. Zhdankin VV. Synlett  2007,  527 
  • 1l Quideau S. Pouysegu L. Deffieux D. Synlett  2008,  467 
  • 1m Dohi T. Kita Y. Chem. Commun.  2009,  2073 
  • 1n Ochiai M. Miyamoto K. Eur. J. Org. Chem.  2008,  4229 
  • 1o Yusubov MS. Zhdankin VV. Mendeleev Commun.  2010,  20:  185 
  • 1p Zhdankin VV. ARKIVOC  2009,  (i):  1 
  • 1q Uyanik M. Ishihara K. Chem. Commun.  2009,  2086 
  • 1r Ngatimin M. Lupton DW. Aust. J. Chem.  2010,  63:  653 
  • 1s Yusubov MS. Nemykin VN. Zhdankin VV. Tetrahedron  2010,  66:  5745 
  • 2a Groves JT. Nemo TE. Myers RS. J. Am. Chem. Soc.  1979,  101:  1032 
  • 2b Cytochrome P450: Structure, Mechanism, and Biochemistry   Ortiz de Montellano PR. Kluwer Academic/Plenum Publishers; New York: 2005. 
  • 2c Metalloporphyrins in Catalytic Oxidations   Sheldon RA. Marcel Dekker; New York: 1994. 
  • 2d Rose E. Andrioletti B. Zrig S. Quelquejeu-Etheve M. Chem. Soc. Rev.  2005,  34:  573 
  • 2e Simonneaux G. Tagliatesta P. J. Porphyrins Phthalocyanines  2004,  8:  1166 
  • 2f Bernadou J. Meunier B. Adv. Synth. Catal.  2004,  346:  171 
  • 2g Vinhado FS. Martins PR. Iamamoto Y. Curr. Top. Catal.  2002,  3:  199 
  • 2h Meunier B. Robert A. Pratviel G. Bernadou J. Porphyrin Handbook  2000,  4:  119 
  • 2i Groves JT. Shalyaev K. Lee J. Porphyrin Handbook  2000,  4:  17 
  • 2j Moro-oka Y. Akita M. Catal. Today  1998,  41:  327 
  • 2k Noyori R. Asymmetric Catalysis in Organic Synthesis   Wiley; New York: 1994. 
  • 3 Moriarty RM. Kosmeder JW. Zhdankin VV. Iodosylbenzene, In Encyclopedia of Reagents for Organic Synthesis   Wiley; Chichester: 2004. 
  • 4a Koposov AY. Netzel BC. Yusubov MS. Nemykin VN. Nazarenko AY. Zhdankin VV. Eur.
    J. Org. Chem.  2007,  4475 
  • 4b Nemykin VN. Koposov AY. Netzel BC. Yusubov MS. Zhdankin VV. Inorg. Chem.  2009,  48:  4908 
  • 4c Yusubov MS. Yusubova RY. Funk TV. Chi K.-W. Zhdankin VV. Synthesis  2009,  2505 
  • 4d Neu HM. Yusubov MS. Zhdankin VV. Nemykin VN. Adv. Synth. Catal.  2009,  351:  3168 
  • 4e Geraskin IM. Pavlova O. Neu HM. Yusubov MS. Nemykin VN. Zhdankin VV. Adv. Synth. Catal.  2009,  351:  733 
  • 5 Togo H. Sakuratani K. Synlett  2002,  1966 
  • 6a Mülbaier M. Giannis A. Angew. Chem. Int. Ed.  2001,  40:  4393 
  • 6b Sorg G. Mengel A. Jung G. Rademann J. Angew. Chem. Int. Ed.  2001,  40:  4395 
  • 6c Lei ZQ. Ma HC. Zhang Z. Yang YX. React. Funct. Polym.  2006,  66:  840 
  • 6d Chung W.-J. Kim D.-K. Lee Y.-S. Tetrahedron Lett.  2003,  44:  9251 
  • 6e Kim D.-K. Chung W.-J. Lee Y.-S. Synlett  2005,  279 
  • 6f Ladziata U. Willging J. Zhdankin VV. Org. Lett.  2006,  8:  167 
  • 6g Karimov RR. Kazhkenov Z.-GM. Modjewski MJ. Peterson EM. Zhdankin VV. J. Org. Chem.  2007,  72:  8149 
  • 8a Chen JM. Huang X. Synthesis  2004,  2459 
  • 8b Togo H. Nogami G. Yokoyama M. Synlett  1998,  534 
  • 8c Togo H. Abe S. Nogami G. Yokoyama M. Bull. Chem. Soc. Jpn.  1999,  72:  2351 
  • 11a Tohma H. Maegawa T. Kita Y. Synlett  2003,  723 
  • 11b Tohma H. Maegawa T. Takizawa S. Kita Y. Adv. Synth. Catal.  2002,  344:  328 
7

Structure 3 is assigned for polystyrene-supported iodosyl-benzene sulfate based on X-ray single crystal data for the monomeric analogue 1, which has been prepared using a similar solid-state procedure. We realize that the presence of the polystyrene chain may have a significant effect on the actual structure of the iodosylbenzene sulfate moiety. The ESI-MS study of compound 1 in aq solution indicates the presence of hydroxy(phenyl)iodonium ion, [PhI(OH)]+ and hydrated iodosylbenzene, PhI(OH)2.4a,b It is possible that similar polymer-bound iodine(III) moieties are present the structure of resin 3.

9

Preparation of PS-IBS (3)
PS-DIB (2)8 (1.430 g, 3.0 mmol) and NaHSO4˙H2O (0.414 g, 3.0 mmol) were grinded intensively in a mortar at r.t. for 10 min. The resulting mixture was left to stay at r.t. overnight, then washed with H2O (3 × 3 mL), acetone (3 × 3 mL), and Et2O (3 × 3 mL) subsequently, and then dried in vacuum to give a yellow powder (1.45 g). Elemental analysis: S, 2.18% (loading of S: 0.68 mmol/g). IR (KBr): ν = 3406, 2923, 1628, 1481, 1406, 1118, 1004, 819, 766, 619 cm.

10

General Procedure for Oxidations Using PS-IBS
To a solution of sulfide 6 (0.2 mmol) or alcohol 5 (0.2 mmol) in aq MeCN (2 mL of MeCN-H2O, 5:1) was added PS-IBS 3 (206 mg, 0.140 mmol) and KBr (2.4 mg, 0.02 mmol) at r.t., and the mixture was magnetically stirred until the sulfide or alcohol was consumed (monitored by TLC). The mixture was filtered, and the resin was washed with EtOAc (3 × 1 mL). The filtrate was washed with sat. NaHCO3 (3 mL) [for alcohols, the filtrate may be washed with 5% H2SO4 (3 mL) before this operation], then extracted with EtOAc (3 × 2 mL). The combined organic solution was washed with brine (3 mL), water (3 mL), and dried over Na2SO4. The solvent was evaporated to yield respective products 7-9; the products were identified by comparison of their MS and NMR spectra with commercially available samples.