Abstract
A simple and efficient copper-catalyzed method has been developed
for synthesis of bicyclic pyrimidinones containing six-, seven-,
eight-membered rings under mild conditions. The protocol uses readily
available 2-bromocycloalk-1-enecarboxylic acids, amidines, and guanidines
as the starting materials, copper-catalyzed cascade couplings provide
the corresponding bicyclic pyrimidinones without addition
of any ligand or additive, and the method is of economical and practical
advantages.
Key words
copper - cascade reaction - bicyclic pyrimidinone - nitrogen heterocycle - synthetic
method
References and Notes
For reviews, see:
<A NAME="RW11510ST-1A">1a </A>
Undheim K.
Benneche T. In Comprehensive
Heterocyclic Chemistry II
Vol. 6:
Katritzky AR.
Rees CW.
Scriven EFV.
McKillop A.
Pergamon;
Oxford:
1996.
p.93
<A NAME="RW11510ST-1B">1b </A>
Lagoja IM.
Chemistry & Biodiversity
2005,
2:
1
<A NAME="RW11510ST-1C">1c </A>
Michael JP.
Nat. Prod. Rep.
2005,
22:
627
<A NAME="RW11510ST-1D">1d </A>
Joule JA.
Mills K. In Heterocyclic Chemistry
4th
ed.:
Blackwell Science Ltd.;
Cambridge
USA:
2000.
p.194
<A NAME="RW11510ST-1E">1e </A>
Erian AW.
Chem. Rev.
1993,
93:
1991
<A NAME="RW11510ST-2">2 </A>
Raltegravir has been approved by the
FDA for the treatment of HIV/AIDS under the trademark ISENTRESS.
<A NAME="RW11510ST-3">3 </A>
Markowitz M.
Morales-Ramirez JO.
Nguyen BY.
Kovacs CM.
Steigbigel RT.
Cooper DA.
Liporace R.
Schwartz R.
Isaacs R.
Gilde LR.
Penning L.
Zhao J.
Teppler H.
J. Acquir. Immune Defic. Syndr.
2006,
43:
509
<A NAME="RW11510ST-4A">4a </A>
Hazuda DJ.
Felock P.
Witmer M.
Wolfe A.
Stillmock K.
Grobler JA.
Espeseth A.
Gabryelski L.
Schleif W.
Blau C.
Miller MD.
Science
2000,
287:
646
<A NAME="RW11510ST-4B">4b </A>
Hazuda DJ.
Young SD.
Guare JP.
Anthony NJ.
Gomez RP.
Wai JS.
Vacca JP.
Handt L.
Motzel SL.
Klein HJ.
Dornadula G.
Danovich RM.
Witmer MV.
Wilson KA.
Tussey L.
Schleif WA.
Gabryelski LS.
Jin L.
Miller MD.
Casimiro DR.
Emini EA.
Shiver JW.
Science
2004,
305:
528
<A NAME="RW11510ST-5">5 </A>
Muraglia E.
Kinzel O.
Gardelli C.
Crescenzi B.
Donghi M.
Ferrara M.
Nizi E.
Orvieto F.
Pescatore G.
Laufer R.
Gonzalez-Paz O.
Marco AD.
Fiore F.
Monteagudo E.
Fonsi M.
Felock PJ.
Rowley M.
Summa V.
J.
Med. Chem.
2008,
51:
861
<A NAME="RW11510ST-6A">6a </A>
Gangjee A.
Vasudevan A.
Kisliuk RL.
J. Heterocycl. Chem.
1997,
34:
1669
<A NAME="RW11510ST-6B">6b </A>
Bernáth G.
Kóbor J.
Lázár J.
Fülöp F.
J.
Heterocycl. Chem.
1996,
33:
1983
<A NAME="RW11510ST-6C">6c </A>
Bernáth G.
Janáky T.
Göndös G.
Lázár J.
Ecsery Z.
Pharmazie
1983,
38:
270
<A NAME="RW11510ST-6D">6d </A>
Nishio T.
Fujisawa M.
Omote Y.
J.
Chem. Soc., Perkin Trans. 1
1987,
2523
<A NAME="RW11510ST-7A">7a </A>
Sekiya T.
Hiranuma H.
Uchide M.
Hata S.
Yamada S.
Chem. Pharm. Bull.
1981,
29:
948
<A NAME="RW11510ST-7B">7b </A>
Claudi F.
Giorgioni G.
Scoccia L.
Ciccocioppo R.
Panocka I.
Massi M.
Eur. J. Med. Chem.
1997,
651
<A NAME="RW11510ST-8">8 </A>
Nair MG.
Dhawan R.
Ghazala M.
Kalman TI.
Ferone R.
Gaumont Y.
Kisliuk RL.
J.
Med. Chem.
1987,
30:
1256
<A NAME="RW11510ST-9">9 </A>
Rosowsky A.
Forsch RA.
Moran RG.
J. Med. Chem.
1989,
32:
709
<A NAME="RW11510ST-10">10 </A>
Ishida J.
Hattori K.
Yamamoto H.
Iwashita A.
Miharab K.
Matsuoka N.
Bioorg. Med. Chem. Lett.
2005,
15:
4221
<A NAME="RW11510ST-11A">11a </A>
Kawamura S.
Sanemitsu Y.
J.
Org. Chem.
1993,
58:
414
<A NAME="RW11510ST-11B">11b </A>
Fülöp F.
Bernáth G.
Synthesis
1985,
1148
<A NAME="RW11510ST-11C">11c </A>
Ferrara M.
Crescenzi B.
Donghi M.
Muraglia E.
Nizi E.
Pesci S.
Summa V.
Gardelli C.
Tetrahedron Lett.
2007,
48:
8379
<A NAME="RW11510ST-12A">12a </A>
Limbach M.
Dalai S.
de Meijere A.
Adv. Synth. Catal.
2004,
346:
760
<A NAME="RW11510ST-12B">12b </A>
Nötzel MW.
Rauch K.
Labahn T.
de Meijere A.
Org.
Lett.
2002,
4:
839
<A NAME="RW11510ST-12C">12c </A>
Dalai S.
Belov VN.
Nizamov S.
Rauch K.
Finsinger D.
de Meijere A.
Eur. J. Org. Chem.
2006,
2753
For recent reviews on copper-catalyzed
Ullmann couplings, see:
<A NAME="RW11510ST-13A">13a </A>
Ma D.
Cai Q.
Acc. Chem. Res.
2008,
41:
1450
<A NAME="RW11510ST-13B">13b </A>
Kunz K.
Scholz U.
Ganzer D.
Synlett
2003,
2428
<A NAME="RW11510ST-13C">13c </A>
Ley SV.
Thomas AW.
Angew.
Chem. Int. Ed.
2003,
42:
5400
<A NAME="RW11510ST-13D">13d </A>
Beletskaya IP.
Cheprakov AV.
Coord. Chem.
Rev.
2004,
248:
2337
<A NAME="RW11510ST-13E">13e </A>
Evano G.
Blanchard N.
Toumi M.
Chem.
Rev.
2008,
108:
3054
<A NAME="RW11510ST-13F">13f </A>
Monnier F.
Taillefer M.
Angew. Chem. Int. Ed.
2009,
48:
6954 ; and references cited therein
For recent studies on the synthesis
of N -heterocycles through Ullmann-type
couplings, see:
<A NAME="RW11510ST-14A">14a </A>
Martin R.
Rivero MR.
Buchwald SL.
Angew. Chem. Int. Ed.
2006,
45:
7079
<A NAME="RW11510ST-14B">14b </A>
Evindar G.
Batey RA.
J. Org. Chem.
2006,
71:
1802
<A NAME="RW11510ST-14C">14c </A>
Bonnaterre F.
Bois-Choussy M.
Zhu J.
Org.
Lett.
2006,
8:
4351
<A NAME="RW11510ST-14D">14d </A>
Zou B.
Yuan Q.
Ma D.
Angew.
Chem. Int. Ed.
2007,
46:
2598
<A NAME="RW11510ST-14E">14e </A>
Yuan X.
Xu X.
Zhou X.
Yuan J.
Mai L.
Li Y.
J.
Org. Chem.
2007,
72:
1510
<A NAME="RW11510ST-14F">14f </A>
Lu H.
Li C.
Org. Lett.
2006,
8:
5365
<A NAME="RW11510ST-15A">15a </A>
Jiang D.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2007,
72:
672
<A NAME="RW11510ST-15B">15b </A>
Jiang Q.
Jiang D.
Jiang Y.
Fu H.
Zhao Y.
Synlett
2007,
1836
<A NAME="RW11510ST-16A">16a </A>
Shafir A.
Buchwald SL.
J.
Am. Chem. Soc.
2006,
128:
8742
<A NAME="RW11510ST-16B">16b </A>
Wang D.
Ding K.
Chem. Commun.
2009,
1891
<A NAME="RW11510ST-17A">17a </A>
Rao H.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2005,
70:
8107
<A NAME="RW11510ST-17B">17b </A>
Rao H.
Jin Y.
Fu H.
Jiang Y.
Zhao Y.
Chem. Eur.
J.
2006,
12:
3636
<A NAME="RW11510ST-17C">17c </A>
Jiang D.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2007,
72:
672
<A NAME="RW11510ST-17D">17d </A>
Guo X.
Rao H.
Fu H.
Jiang Y.
Zhao Y.
Adv. Synth.
Catal.
2006,
348:
2197
<A NAME="RW11510ST-17E">17e </A>
Zeng L.
Fu H.
Qiao R.
Jiang Y.
Zhao Y.
Adv. Synth.
Catal.
2009,
351:
1671
<A NAME="RW11510ST-17F">17f </A>
Gao X.
Fu H.
Qiao R.
Jiang Y.
Zhao Y.
J. Org. Chem.
2008,
73:
6864
<A NAME="RW11510ST-18A">18a </A>
Huang C.
Fu Y.
Fu H.
Jiang Y.
Zhao Y.
Chem. Commun.
2008,
6333
<A NAME="RW11510ST-18B">18b </A>
Yang D.
Fu H.
Hu L.
Jiang Y.
Zhao Y.
J. Org. Chem.
2008,
73:
7841
<A NAME="RW11510ST-18C">18c </A>
Wang F.
Liu H.
Fu H.
Jiang Y.
Zhao Y.
Org. Lett.
2009,
11:
2469
<A NAME="RW11510ST-18D">18d </A>
Yang D.
Liu H.
Yang H.
Fu H.
Hu L.
Jiang Y.
Zhao Y.
Adv. Synth. Catal.
2009,
351:
1999
<A NAME="RW11510ST-18E">18e </A>
Gong X.
Yang H.
Liu H.
Jiang Y.
Zhao Y.
Fu H.
Org.
Lett.
2010,
12:
3128
<A NAME="RW11510ST-18F">18f </A>
Liu X.
Fu H.
Jiang Y.
Zhao Y.
Angew. Chem. Int. Ed.
2009,
48:
348
<A NAME="RW11510ST-19">19 </A>
General Procedure
for the Synthesis of Compounds 3a-s
A two-neck
round-bottom flask was charged with a magnetic stirrer, evacuated
and backfilled with nitrogen. Amidine hydrochloride or guanidine
hydrochloride 2a -f (0.6
mmol) or bis(guanidine)sulfate (2g , 0.35
mmol), CuI (0.05 mmol, 9.5 mg), Cs2 CO3 (1
mmol, 326 mg), and DMF (1 mL) were added under nitrogen atmosphere.
After a 15 min stirring, 2-bromocycloalk-1-enecarboxylic acid (1 , 0.5 mmol) was added to the flask. The
mixture was allowed to stir under nitrogen atmosphere at the shown
temperature for some time (see Table
[² ]
).
After completion of the reaction, the mixture was concentrated with
the aid of a rotary evaporator. The residue was purified by column
chroma-tography on silica gel using PE-EtOAc or CH2 Cl2 -MeOH
as eluent to provide the desired product.
<A NAME="RW11510ST-20A">20a </A>
Nicolaou KC.
Boddy CNC.
Natarajar S.
Yue
T.-Y.
Li H.
Bräse S.
Ramanjulu JM.
J.
Am. Chem. Soc.
1997,
119:
3421
<A NAME="RW11510ST-20B">20b </A>
Lindley J.
Tetrahedron
1984,
40:
1433
<A NAME="RW11510ST-20C">20c </A>
Kalinin AV.
Bower JF.
Riebel P.
Snieckus V.
J. Org.
Chem.
1999,
64:
2986
<A NAME="RW11510ST-20D">20d </A>
Cai Q.
Zou B.
Ma D.
Angew.
Chem. Int. Ed.
2006,
45:
1276
<A NAME="RW11510ST-21">21 </A>
Flanagan SP.
Goddard R.
Guiry PJ.
Tetrahedron
2005,
61:
9808