Synlett 2010(17): 2565-2570  
DOI: 10.1055/s-0030-1258579
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

New Synthesis of 2,3-Diarylacridin-9(10H)-ones and (E)-2-Phenyl-4-styrylfuro[3,2-c]quinolines

Vera L. M. Silva, Artur M. S. Silva*, José A. S. Cavaleiro
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: artur.silva@ua.pt;
Further Information

Publication History

Received 2 August 2010
Publication Date:
23 September 2010 (online)

Abstract

A new synthesis of 2,3-diarylacridin-9(10H)-ones and (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines is described. This was accomplished by the Heck reaction of (E)-3-iodo-2-styrylquinolin-4(1H)-ones with styrene, leading to (E,E)-2,3-distyrylquinolin-4(1H)-ones, which when heated at high temperatures, cyclise in two different ways. Electrocyclisation and further in situ oxidation leads to 2,3-diarylacridin-9(10H)-ones and tautomerisation, cyclisation by nucleophilic addition and further in situ oxidation produces (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines.

    References

  • 1a Tarus PK. Coombes PH. Crouch NR. Mulholland DA. Moodley B. Phytochemistry  2005,  66:  703 
  • 1b Al-Rehaily AJ. Ahmad MS. Muhammad I. Al-Thukair AA. Perzanowski HP. Phytochemistry  2003,  64:  1405 
  • 1c Naidoo D. Coombes PH. Mulholland DA. Crouch NR. Van den Bergh AJJ. Phytochemistry  2005,  66:  1724 
  • 1d Wansi JD. Wandi J. Meva’a LM. Waffo AFK. Ranjit R. Khan SN. Asma A. Iqbal CM. Lallemand M.-C. Tillequin F. Fomum Tanee Z. Chem. Pharm. Bull.  2006,  54:  292 
  • 1e Waffo AFK. Coombes PH. Crouch NR. Mulholland DA. El Amin SMM. Smith PJ. Phytochemistry  2007,  68:  663 
  • 1f Kumar S. Raj K. Khare P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2009,  48:  291 
  • 2 Tabarrini O. Cecchetti V. Fravolini A. Nocentini G. Barzi A. Sabatini S. Miao H. Sissi C. J. Med. Chem.  1999,  42:  2136 
  • 3a Basco KL. Mitaku S. Skaltsounis A.-L. Ravelomanantsoa N. Tillequin F. Koch M. Le Bras J. Antimicrob. Agents Chemother.  1994,  38:  1169 
  • 3b Winter RW. Kelly JX. Smilkstein MJ. Dodean R. Bagby GC. Rathbun RK. Levin JI. Hinrichs D. Riscoe MK. Exp. Parasitol.  2006,  114:  47 
  • 3c Kelly JX. Smilkstein MJ. Cooper RA. Lane KD. Johnson RA. Janowsky A. Dodean RA. Hinrichs DJ. Winter R. Riscoe M. Antimicrob. Agents Chemother.  2007,  51:  4133 
  • 4 Demeunynck M. Charmantray F. Martelli A. Curr. Pharm. Design  2001,  7:  1703 
  • 5a Boumendjel A. Macalou S. Ahmed-Belkacem A. Blanc M. Di Pietro A. Bioorg. Med. Chem.  2007,  15:  2892 
  • 5b Gopinath VS. Thimmaiah P. Thimmaiah KN. Bioorg. Med. Chem.  2008,  16:  474 
  • 5c Bhonde M. Padgaonkar A. Deore V. Yewalkar N. Bhatia D. Rathos M. Joshi K. Vishwakarma RA. Kumar S. Bioorg. Med. Chem. Lett.  2008,  18:  3603 
  • 6a Kawaii S. Tomono Y. Katase E. Ogawa K. Yano M. Takemura Y. Ju-ichi M. Ito C. Furukawa H. J. Nat. Prod.  1999,  62:  587 
  • 6b Belmont P. Bosson J. Godet T. Tiano M. Anti-Cancer Agents Med. Chem.  2007,  7:  139 
  • 7 Zarubaev VV. Slita AV. Krivitskaya VZ. Sirotkin AK. Kovalenko AL. Chatterjee NK. Antiviral Res.  2003,  58:  131 
  • 8 Fujiwara M. Okamoto M. Watanabe M. Machida H. Shigeta S. Konno K. Yokota T. Baba M. Antiviral Res.  1999,  43:  179 
  • 9 Goodell JR. Puig-Basagoiti F. Forshey BM. Shi PY. Ferguson DM. J. Med. Chem.  2006,  49:  2127 
  • 10 Goodell JR. Madhok AA. Hiasa H. Ferguson DM. Bioorg. Med. Chem.  2006,  14:  5467 
  • 11 Tabarrini O. Manfroni G. Fravolini A. Cecchetti V. Sabatini S. De Clercq E. Rozensky J. Canard B. Dutartre H. Paeshuyse J. Neyts J. J. Med. Chem.  2006,  49:  2621 
  • 12a Akanitapichat P. Lowden CT. Bastow KF. Antiviral Res.  2000,  45:  123 
  • 12b Akanitapichat P. Bastow KF. Antiviral Res.  2002,  53:  113 
  • 13 Bastow KF. Curr. Drug Targets: Infect. Disord.  2004,  4:  323 
  • 14 Bernardino AMR. Castro HC. Frugulhetti ICPP. Loureiro NIV. Azevedo AR. Pinheiro LCS. Souza TML. Giongo V. Passamani F. Magalhães UO. Albuquerque MG. Cabral LM. Rodrigues CR. Bioorg. Med. Chem.  2008,  16:  313 
  • 15a Lowden CT. Bastow KF. Antiviral Res.  2003,  59:  143 
  • 15b Lowden CT. Bastow KF. J. Med. Chem.  2003,  46:  5015 
  • 16 Stankiewicz-Drogon A. Palchykovska LG. Kostina VG. Alexeeva IV. Shved AD. Boguszewska-Chachulska AM. Bioorg. Med. Chem.  2008,  16:  8846 
  • 17 Basco LK. Mitaku S. Skaltsounis A.-L. Ravelomanantsoa N. Tillequin F. Koch M. Les Bras J. Antimicrob. Agents Chemother.  1994,  38:  1169 
  • 18 Smith JA. West RW. Allen M. J. Fluoresc.  2004,  14:  151 
  • 19 Saito Y. Hanawa K. Bag SS. Motegi K. Saito I. Nucleic Acids Symp. Ser.  2006,  50:  181 
  • 20 Smilkstein M. Sriwilaijaroen N. Kelly JX. Wilairat P. Riscoe M. Antimicrob. Agents Chemother.  2004,  48:  1803 
  • 21 Dadabhoy A. Faulkner S. Sammes PG. J. Chem. Soc., Perkin Trans. 2  2002,  2:  348 
  • 22 Nikolov P. Petkova I. Köhler G. Stojanov S. J. Mol. Struct.  1998,  448:  247 
  • 23 Lunardi CN. Tedesco AC. Kurth TL. Brinn IM. Photochem. Photobiol. Sci.  2003,  2:  954 
  • 24 González-Blanco C. Velázquez MM. Costa AMB. Barreleiro P. J. Colloid Interface Sci.  1997,  189:  43 
  • 25 Bretonniere Y. Cann MJ. Parker D. Slater R. Org. Biomol. Chem.  2004,  2:  1624 
  • 26 Wang B. Bouffier L. Demeunynck M. Mailley P. Roget A. Livache T. Dumy P. Bioelectrochemistry  2004,  63:  233 
  • 27 Ferreira ME. de Arias AR. Yaluff G. Bilbao NV. Nakayama H. Torres S. Schinini A. Guy I. Heinzen H. Fournet A. Phytomedicine  2010,  17:  375 
  • 28 Mekouar K. Mouscadet J.-F. Desmaele D. Subra F. Leh H. Savouré D. Auclair C. d’Angelo J. J. Med. Chem.  1998,  41:  2846 
  • 29 Franck X. Fournet A. Prina E. Mahieux R. Hocquemiller R. Figadere B. Bioorg. Med. Chem.  2004,  14:  3635 
  • 30 Mesa VAM. Molano MPA. Seon B. Figadere B. Robledo SM. Muñoz DL. Sáez VJA. Vitae  2008,  15:  259 ; and references cited therein
  • 31 Delmas F. Avellaneda A. Di Giogio C. Robin M. De Clercq E. Timon-David P. Galy JJ. Eur. J. Med. Chem.  2004,  685 
  • 32 Nakamura S. Kozuka M. Bastow KF. Tokuda H. Nishino H. Suzuki M. Tatsuzaki J. Natschke SLM. Kuo S.-C. Lee K.-H. Bioorg. Med. Chem.  2005,  13:  4396 
  • 33 Nishio R. Wessely S. Sugiura M. Kobayashi S. J. Comb. Chem.  2006,  8:  459 
  • 34 Mai HDT. Gaslonde T. Michael S. Tillequin F. Koch M. Bongui J.-B. Elomri A. Seguin E. Pfeiffer B. Renard P. David-Cordonnier M.-H. Laine W. Bailly C. Kraus-Berthier L. Léonce S. Hickman JA. Pierré A. J. Med. Chem.  2003,  46:  3072 
  • 35a Costes N. Le Deit H. Michael S. Tillequim F. Koch M. Pfeiffer B. Renard P. Léonce S. Guilbaud N. Kraus-Berthier L. Pierré A. Atassi G. J. Med. Chem.  2000,  43:  2395 
  • 35b Michael S. Gaslonde T. Tillequin F. Eur. J. Med. Chem.  2004,  39:  649 
  • 36a Rudas M. Nyerges M. Toke L. Pete B. Groundwater PW. Tetrahedron Lett.  1999,  40:  7003 
  • 36b Zhao J. Larock RC. J. Org. Chem.  2007,  72:  583 
  • 37 MacNeil SL. Wilson BJ. Snieckus V. Org. Lett.  2006,  8:  1133 
  • 38a Bhoga U. Mali RS. Adapa SR. Tetrahedron Lett.  2004,  45:  9483 
  • 38b Venkataraman S. Barange DK. Pal M. Tetrahedron Lett.  2006,  47:  7317 ; and references cited therein
  • 39 Barluenga J. Mendoza A. Rodríguez F. Fañanás FJ. Chem. Eur. J.  2008,  14:  10892 
  • 40 Wall VM. Eisenstadt A. Ager DJ. Laneman SA. Platinum Metals Rev.  1999,  43:  138 
  • 43a Plisson C. Chenault J. Heterocycles  1999,  51:  2627 
  • 43b Mphalele MJ. Nwamadi MS. Mabeta P. J. Heterocycl. Chem.  2006,  43:  255 
  • 43c Almeida AIS. Silva AMS. Cavaleiro JAS. Synlett  2010,  462 
  • 49a Wyman GM. Chem. Rev.  1955,  55:  625 
  • 49b Yamashita S. Bull. Chem. Soc. Jpn.  1961,  34:  487 
41

Optimized Experimental Procedure for the Synthesis of ( E )-3-Iodo-2-styrylquinolin-4(1 H )-ones 2a-c
Na2CO3 (0.064 g, 0.61 mmol) and I2 (0.15 g, 0.61 mmol) were added to a solution of the appropriate (E)-2-styryl-quinolin-4(1H)-one 1a-c (0.40 mmol) in anhyd THF (25 mL). The mixture was stirred, protected from the daylight (to avoid the E/Z isomerisation), at r.t. until complete consumption of the starting material (4-5 h) and then poured into an aq sat. solution of Na2S2O3. The solid obtained was filtered, washed with H2O and crystallised from EtOH. (E)-3-Iodo-2-styrylquinolin-4(1H)-ones 2a-c were obtained as yellow solids (2a, 211.7 mg, 93%; 2b, 201.7 mg, 82%; 2c, 236.2 mg, 95%).

42

Analytical Data for ( E )-3-Iodo-2-styrylquinolin-4(1 H )-one (2a) Mp 194-197 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.39 (ddd, 1 H, J = 8.0, 6.8, 1.2 Hz, H-6), 7.43 (d, 1 H, J = 16.4 Hz, H-α), 7.45-7.57 (m, 3 H, H-3′,4′,5′), 7.55 (d, 1 H, J = 16.4 Hz, H-β), 7.70-7.76 (m, 3 H, H-7, H-2′,6′), 7.80 (d, 1 H, J = 8.4 Hz, H-8), 8.11 (dd, 1 H, J = 8.0, 1.2 Hz, H-5), 11.97 (s, 1 H, NH) ppm. ¹³C NMR (75.47 MHz, DMSO-d 6): δ = 87.5 (C-3), 118.3 (C-8), 120.8 (C-10), 124.0 (C-6), 125.5 (C-5), 126.4 (C-α), 127.4 (C-2′,6′), 129.2 (C-3′,5′), 129.7 (C-4′), 132.3 (C-7), 135.0 (C-1′), 137.1 (C-β), 139.4 (C-9), 147.6 (C-2), 173.4 (C-4) ppm. MS (ESI+): m/z (%) = 374 (100) [M + H]+, 396 (12) [M + Na]+, 769 (3) [2 M + Na]+. Anal. Calcd (%) for C17H12INO (373.19): C, 54.71; H, 3.24; N, 3.75. Found: C, 55.10; H, 3.17; N, 3.77.

44

Optimized Experimental Procedure for the Heck Reaction of ( E )-3-Iodo-2-styrylquinolin-4(1 H )-one 2a-c with Styrene: Synthesis of ( E , E )-2,3-distyrylquinolin-4(1 H )-ones 4a-c Styrene (138.8 µL, 1.6 mmol) was added to a mixture of the appropriate (E)-3-iodo-2-styrylquinolin-4(1H)-one 2a-c (0.24 mmol), tetrakis(triphenylphosphine)palladium(0) (13.94 mg, 1.2 ¥ 10 mmol), and Et3N (33.4 µl, 0.24 mmol) in MeCN (6 mL). The mixture was heated at reflux until consumption of the starting material, which was confirmed by TLC (Table  [¹] ). The mixture was then poured into H2O, extracted with CHCl3, and dried over anhyd Na2SO4. The solvent was evaporated and the residue dissolved in CH2Cl2 and purified by TLC using a mixture of EtOAc-light PE (3:2) as eluent. The (E,E)-2,3-distyrylquinolin-4(1H)-ones 4a-c were obtained as yellow solids in good yields (4a, 52.2 mg, 62%; 4b, 55.0 mg, 65%; 4c, 49.3 mg, 58%).

45

Analytical Data of ( E,E )-2,3-Distyrylquinolin-4(1 H )-one (4a) Mp 207-208 ˚C. ¹H NMR (500.13 MHz, DMSO-d 6): δ = 7.24 (t, 1 H, J = 7.6 Hz, H-4′′), 7.32-7.39 (m, 5 H, H-6, H-8, H-2′,6′, H-α′), 7.41 (t, 1 H, J = 7.5 Hz, H-4′), 7.48 (t, 2 H, J = 7.5 Hz, H-3′,5′), 7.52 (d, 1 H, J = 16.4 Hz, H-β), 7.56 (d, 2 H, J = 7.6 Hz, H-2′′,6′′), 7.67 (dt, 1 H, J = 8.0, 1.2 Hz, H-7), 7.70 (d, 1 H, J = 16.4 Hz, H-α), 7.78 (t, 2 H, J = 7.6 Hz, H-3′′,5′′), 7.85 (d, 1 H, J = 16.0 Hz, H-β′), 8.17 (dd, 1 H, J = 8.1, 1.2 Hz, H-5), 11.69 (br s, NH) ppm. ¹³C NMR (125.77 MHz, DMSO-d 6): δ = 115.4 (C-3), 118.6 (C-8), 121.3 (C-α), 122.4 (C-10), 123.1 (C-α′), 124.4 (C-6), 125.2 (C-5), 126.1 (C-2′′,6′′), 127.0 (C-4′′), 127.5 (C-3′′,5′′), 128.7 (C-3′,5′), 129.0 (C-2′,6′), 129.2 (C-4′), 131.0 (C-β′), 131.6 (C-7), 135.7 (C-β,1′), 136.4 (C-1′′), 138.6 (C-9), 145.5 (C-2), 175.9 (C-4). MS (ESI+): m/z (%) = 350 (100) [M + H]+. HRMS (ESI+): m/z calcd for [C25H20NO + H]+: 350.15394; found: 350.15345.

46

Optimized Experimental Procedure for the Synthesis of 2,3-Diarylacridin-9(10 H )-ones 5a-c and ( E )-2-phenyl-4-styrylfuro[3,2- c ]quinolines 7a-c
Iodine (1.82 mg, 7.15 ¥ 10 mmol) and PTSA (1.36 mg, 7.15 ¥ 10 mmol) were added to a solution of the appropriate (E,E)-2,3-distyrylquinolin-4(1H)-one 4a-c (7.15 ¥ 10 mmol) in 1,2,4-trichlorobenzene (3 mL), and the mixture was refluxed (see Table  [²] for reaction time). After cooling the reaction mixture was purified by column chromatography using light PE as eluent to remove the 1,2,4-trichlorobenzene. Then, the mixture was removed from the column using CH2Cl2 as eluent and was purified by TLC using a mixture of EtOAc-light PE (3:2) as eluent. Two main compounds were isolated in each case: That with the lower R f value corresponded to the 2,3-diarylacridin-9(10H)-ones 5a-c which were isolated as yellow compounds in moderate yields (5a, 9.4 mg, 38%; 5b, 8.7 mg, 35%; 5c, 9.9 mg, 40%); and that with higher R f value corresponded to (E)-2-phenyl-4-styrylfuro[3,2-c]quinolines 7a-c obtained as yellow compounds also in moderate yields (7a, 10.2 mg, 41%; 7b, 10.9 mg, 44%; 7c, 13.9 mg, 56%).

47

Analytical Data of 2,3-Diphenylacridin-9(10 H )-one (5a)
Mp 283-284 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.15-7.17 (m, 2 H, H-2′,6′), 7.21-7.32 (m, 9 H, H-3′,4′,5′, H-2′′,3′′,4′′,5′′,6′′, H-7), 7.55 (s, 1 H, H-4), 7.58 (d, 1 H, J = 8.0 Hz, H-5), 7.77 (ddd, 1 H, J = 8.0, 7.0, 1.1 Hz, H-6), 8.20 (s, 1 H, H-1), 8.26 (dd, 1 H, J = 8.0, 1.1 Hz, H-8), 11.92 (s, 1 H, NH) ppm. ¹³C NMR (125.77 MHz, DMSO-d 6): δ = 117.5 (C-5), 118.9 (C-4), 119.6 (C-9a), 120.7 (C-7), 121.3 (C-8a), 126.1 (C-4′), 126.6 (C-8), 127.5 (C-4′′), 127.6 (C-1), 128.1 (C-3′′,5′′), 128.2 (C-3′,5′), 129.3 (C-2′,6′), 129.6 (C-2′′,6′′), 133.5 (C-2), 133.6 (C-6), 140.1 and 140.2 (C-1′ and C-1′′), 140.4 (C-4a), 141.0 (C-4b), 145.4 (C-3), 176.5 (C-9). HRMS (ESI+): m/z calcd for [C25H18NO + H]+: 348.1383; found: 348.1384.

48

Analytical Data of ( E )-2-Phenyl-4-styrylfuro[3,2- c ]quinoline (7a) Mp 154-156 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.41 (t, 1 H, J = 7.0 Hz, H-4′′), 7.48-7.55 (m, 1 H, H-4′), 7.53 (t, 1 H, J = 7.0 Hz, H-3′′,5′′), 7.61 (t, 2 H, J = 7.6 Hz, H-3′,5′), 7.70 (dd, 1 H, J = 7.7, 7.4 Hz, H-8), 7.78 (ddd, 1 H, J = 8.0, 7.7, 1.3 Hz, H-7), 7.89 (d, 1 H, J = 17.4 Hz, H-α), 7.91 (d, 2 H, J = 7.0 Hz, H-2′′,6′′), 8.08 (d, 1 H, J = 17.4 Hz, H-β), 8.11 (d, 2 H, J = 7.6 Hz, H-2′,6′), 8.15 (d, 1 H, J = 8.0 Hz, H-6), 8.25 (s, 1 H, H-3), 8.39 (dd, 1 H, J = 7.4, 1.3 Hz, H-9) ppm. ¹³C NMR (125.77 MHz, DMSO-d 6): δ = 101.6 (C-3), 115.7 (C-9a), 119.8 (C-9), 120.9 (C-3a), 124.7 (C-2′,6′), 125.4 (C-α), 126.8 (C-8), 127.6 (C-2′′,6′′), 128.9, 129.06 and 129.12 (C-3′′,4′′,5′′, C-1′, C-4′, C-7), 129.26 (C-3′,5′), 129.32 (C-6), 135.2 (C-β), 136.2 (C-1′′), 145.0 (C-5a), 150.0 (C-4), 154.9 (C-2), 155.7 (C-9b) ppm. HRMS (ESI+): m/z calcd for [C25H18NO + H]+: 348.1383; found: 348.1378.