Synlett 2010(16): 2525-2526  
DOI: 10.1055/s-0030-1258550
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Nickel Boride

Devanshi Magoo*
Department of Chemistry, University of Delhi, Delhi 110007, India
e-Mail: devanshimagoo@gmail.com;
Further Information

Publication History

Publication Date:
03 September 2010 (online)

Introduction

Nickel boride (Ni2B), first reported in the pioneering work of Schlezinger and Brown [¹] and traditionally used as a catalyst for hydrogenation, [²] has more recently found a niche as a reducing agent in its own right. [³] Its ease of preparation, handling, and versatility as a reducing agent promise nickel boride its deserved attention from academic and industrial sectors. Nickel boride has been employed for a wide range of transformations including reductive dehalogenation of organic halides [4] , reductive amination of carbonyl compounds, [5] desulfurization of a variety of thioxo compounds, [6] deoxygenation of sulfoxides and selenoxides, [7] and reducing of nitrogen functionalities. [8] Of late, the reagent is being explored in the form of a nickel boride silica nanocomposite catalyst for hydrogen production from NaBH4 hydrolysis. [9]

    References

  • 1 Schlesinger HI, and Brown HC. inventors; US Patent  2461661.  1949
  • 2a Paul R. Buisson P. Joseph N. Compt. Rend.  1951,  23:  627 
  • 2b Paul R. Buisson P. Joseph N. Ind. Eng. Chem.  1952,  44:  1006 
  • 3 Ganem B. Osby JO. Chem. Rev.  1986,  86:  763 
  • 4 Khurana JM. Kumar S. Nand B. Can. J. Chem.  2008,  86:  1052 
  • 5 Saxena I. Borah R. Sarma JC. J. Chem. Soc., Perkin Trans. 1  2000,  503 
  • 6a Khurana JM. Kukreja G. Bansal G. J. Chem. Soc., Perkin Trans. 1  2002,  2520 
  • 6b Khurana JM. Kukreja G. J. Heterocycl. Chem.  2003,  40:  677 
  • 6c Khurana JM. Agrawal A. Kukreja G. Heterocycles  2006,  68:  1885 
  • 6d Khurana JM. Sharma V. Chem. Heterocycl. Compd.  2008,  3:  309 
  • 7 Khurana JM. Ray A. Singh S. Tetrahedron Lett.  1998,  39:  3829 
  • 8a Rao HSP. Reddy KS. Turnbull K. Borchers V. Synth. Commun.  1992,  22:  1339 
  • 8b Seltzmann HH. Berrang BD. Tetrahedron Lett.  1993,  34:  3083 
  • 8c Nose A. Kudo T. Chem. Pharm. Bull. Jpn.  1989,  37:  816 
  • 9 Chen Y. Kim H. Fuel. Process. Tech.  2008,  89:  966 
  • 10 Schlesinger HI. Brown HC. Finholt AE. Galbreath JR. Hoeckstra HR. Hyde EK. J. Am. Chem. Soc.  1953,  75:  215 
  • 11 Abe N. Fujisaki F. Sumoto K. Miyam S. Chem. Pharm. Bull. Jpn.  1991,  39:  1167 
  • 12 Belisle CM. Young YM. Singaram B. Tetrahedron Lett.  1994,  35:  5595 
  • 13 Khurana JM. Sharma P. Bull. Chem. Soc. Jpn.  2004,  77:  549 
  • 14 Khurana JM. Kiran J. Chem. Res. (S)  2006,  374 
  • 15 Khurana JM. Arora R. Synthesis  2009,  1127 
  • 16 Khurana JM. Chauhan S. Synth. Commun.  2001,  31:  3485 
  • 17 Khurana JM. Chauhan S. J. Chem. Res. (S)  2002,  201 ;
    J. Chem. Res. (M)  2002,  519 
  • 18 Khurana JM. Kukreja G. Synth. Commun.  2002,  32:  1265 
  • 19 Caddick S. Judd DB. Lewis AKK. Reich MT. Williams MRV. Tetrahedron  2003,  59:  5417 
  • 20 Cheng JR. Wen J. Li YZ. Guo XY. Huang RQ. Chem. J. Chin. Univ.  2001,  22:  91 
  • 21 Gemma S. Kukreja G. Tripaldi P. Altarelli M. Bernetti M. Franceschini S. Savini L. Campiani G. Fattorusso C. Butini S. Tetrahedron Lett.  2008,  49:  2074 
  • 22 Acosta D. Martinez J. Carrera C. Erdmann E. Gonzo E. Destéfanis H. Lat. Am. Appl. Res.  2006,  36:  317 
  • 23 Rahman A. Jonnalagadda SB. J. Mol. Catal. A: Chem.  2009,  299:  98