Subscribe to RSS
DOI: 10.1055/s-0030-1258510
Catalyst-Free Process for the Synthesis of 5-Aryl-2-Oxazolidinones via Cycloaddition Reaction of Aziridines and Carbon Dioxide
Publication History
Publication Date:
22 July 2010 (online)

Abstract
A simple approach for facile synthesis of 5-aryl-2-oxazolidinones in excellent regioselectivity from aziridines under compressed CO2 conditions was developed in the absence of any catalyst and organic solvent. The reaction outcome was found to be tuned by subtly adjusting CO2 pressure. The adduct formed in situ of aziridine and CO2 is assumed to act as a catalyst in this reaction, which was also studied by means of in situ FT-IR technique.
Key words
carbon dioxide - aziridine - catalyst-free - 5-aryl-2-oxazolidinones
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Gawley RE.Campagna SA.Santiago M.Ren T. Tetrahedron: Asymmetry 2002, 13: 29Reference Ris Wihthout Link - 1b
Aurelio L.Brownlee RTC.Hughus AB. Chem. Rev. 2004, 104: 5823Reference Ris Wihthout Link - 1c
Makhtar TM.Wright GD. Chem. Rev. 2005, 105: 529Reference Ris Wihthout Link - 1d
Barbachyn MR.Ford CW. Angew. Chem. Int. Ed. 2003, 42: 2010Reference Ris Wihthout Link - 1e
Hoellman DB.Lin G.Rattan LMA.Jacobs MR.Appelbaum PC. Antimicrob. Agents Chemother. 2003, 47: 1148Reference Ris Wihthout Link - 2a
Ben-Ishai D. J. Am. Chem. Soc. 1956, 78: 4962Reference Ris Wihthout Link - 2b
Vo L.Ciula J.Gooding OW. Org. Process Res. Dev. 2003, 7: 514Reference Ris Wihthout Link - 2c
Close WJ. J. Am. Chem. Soc. 1951, 73: 95Reference Ris Wihthout Link - 2d
Lynn JW. inventors; US 2975187. ; Chem. Abstr. 1961, 55, 87561Reference Ris Wihthout Link - 2e
Steele AB. inventors; US 2868801. ; Chem. Abstr. 1959, 53, 56549Reference Ris Wihthout Link - 2f
Yoshida T.Kambe N.Ogawa A.Sonoda N. Phosphorus, Sulfur Relat. Elem. 1988, 38: 137Reference Ris Wihthout Link - 3a
Miller AW.Nguyen ST. Org. Lett. 2004, 6: 2301Reference Ris Wihthout Link - 3b
Shen YM.Duan WL.Shi M. Eur. J. Org. Chem. 2004, 3080Reference Ris Wihthout Link - 3c
Hancock MT.Pinhas AR. Tetrahedron Lett. 2003, 44: 5457Reference Ris Wihthout Link - 3d
Mu WH.Chasse GA.Fang DC. J. Phys. Chem. A. 2008, 112: 6708Reference Ris Wihthout Link - 3e
Sudo A.Morioka Y.Sanda F.Endo T. Tetrahedron Lett. 2004, 45: 1363Reference Ris Wihthout Link - 3f
Sudo A.Morioka Y.Koizumi E.Sanda F.Endo T. Tetrahedron Lett. 2003, 44: 7889Reference Ris Wihthout Link - 3g
Kawanami H.Ikushima Y. Tetrahedron Lett. 2002, 43: 3841Reference Ris Wihthout Link - 3h
Kawanami H.Matsumoto H.Ikushima Y. Chem. Lett. 2005, 34: 60Reference Ris Wihthout Link - 3i
Tascedda P.Dunach E. Chem. Commun. 2000, 449Reference Ris Wihthout Link - 3j
Du Y.Wu Y.Liu AH.He LN. J. Org. Chem. 2008, 73: 4709Reference Ris Wihthout Link - 3k
Wu Y.He LN.Du Y.Wang JQ.Miao CX.Li W. Tetrahedron 2009, 65: 6204Reference Ris Wihthout Link - 4a
Mitsudo T.Hori Y.Yamakawa Y.Watanabe Y. Tetrahedron Lett. 1987, 28: 4417Reference Ris Wihthout Link - 4b
Shi M.Shen YM. J. Org. Chem. 2002, 67: 16Reference Ris Wihthout Link - 4c
Costa M.Chiusoli GP.Rizzardi M. Chem. Commun. 1996, 1699Reference Ris Wihthout Link - 4d
Costa M.Chiusoli GP.Taffurelli D.Dalmonego G. J. Chem. Soc., Perkin Trans. 1 1998, 1541Reference Ris Wihthout Link - 4e
Maggi R.Bertolotti C.Orlandini E.Oro C.Sartoria G.Selvab M. Tetrahedron Lett. 2007, 48: 2131Reference Ris Wihthout Link - 4f
Kayaki Y.Yamamoto M.Suzuki T.Ikariya T. Green Chem. 2006, 8: 1019Reference Ris Wihthout Link - 5a
Gu YL.Zhang QH.Duan ZY.Zhang J.Zhang SG.Deng YQ. J. Org. Chem. 2005, 70: 7376Reference Ris Wihthout Link - 5b
Jiang HF.Zhao JW. Tetrahedron Lett. 2009, 50: 60Reference Ris Wihthout Link - 5c
Fournier J.Brunean C.Dixneuf PH. Tetrahedron Lett. 1990, 31: 1721Reference Ris Wihthout Link - 5d
Zhang QH.Shi F.Gu YL.Yang J.Deng YQ. Tetrahedron Lett. 2005, 46: 5907Reference Ris Wihthout Link - 5e
Jiang HF.Zhao JW.Wang AZ. Synthesis 2008, 763Reference Ris Wihthout Link - 6a
Matsuda H.Baba A.Nomufa R.Korl M.Ogawa S. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24: 239Reference Ris Wihthout Link - 6b
Tominaga K.Sasaki Y. Synlett 2002, 307Reference Ris Wihthout Link - 6c
Kubota Y.Kodaka M.Tomohiro T.Okuno H. J. Chem. Soc., Perkin Trans. 1 1993, 5Reference Ris Wihthout Link - 6d
Kodaka M.Tomihiro T.Lee AL.Okuno H. J. Chem. Soc., Chem. Commun. 1989, 1479Reference Ris Wihthout Link - 6e
Paz J.Perez-Balado C.Iglesias B.Munoz L. Synlett 2009, 395Reference Ris Wihthout Link - 6f
Dinsmore CJ.Mercer SP. Org. Lett. 2004, 6: 2885Reference Ris Wihthout Link - 6g
Patil YP.Tambade PJ.Jagtap SR.Bhanage BM. J. Mol. Catal. A: Chem. 2008, 289: 14Reference Ris Wihthout Link - 6h
Du Y.Wang JQ.Chen JY.Cai F.Tian JS.Kong DL.He LN. Tetrahedron Lett. 2006, 47: 1271Reference Ris Wihthout Link - 6i
Bhanage BM.Fujita S.Ikushima Y.Arai M. Green Chem. 2003, 5: 340Reference Ris Wihthout Link - 6j
Bhanage BM.Fujita S.Ikushima Y.Arai M. Green Chem. 2004, 6: 78Reference Ris Wihthout Link - 6k
Fujita S.Kanamaru H.Senboku H.Arai M. Int. J. Mol. Sci. 2006, 7: 438Reference Ris Wihthout Link - 7
Yoo WJ.Li CJ. Adv. Synth. Catal. 2008, 350: 1503 - 8a
Ihata O.Kayaki Y.Ikariya T. Angew. Chem. Int. Ed. 2004, 43: 717Reference Ris Wihthout Link - 8b
Ihata O.Kayaki Y. Macromolecules 2005, 38: 6429Reference Ris Wihthout Link - 8c
Soga K.Chiang WY.Ikeda S.
J. Polym. Sci., Polym. Chem. Ed. 1974, 12: 121Reference Ris Wihthout Link - 8d
Lundberg RD,Albans S, andMontgomery DR. inventors; US 3523924. ; Chem. Abstr. 1970, 73, 111037Reference Ris Wihthout Link - 9a
Jessop PG.Ikariya T.Noyori R. Chem. Rev. 1999, 99: 475Reference Ris Wihthout Link - 9b
Green
Chemistry Using Liquid and Supercritical Carbon Dioxide
DeSimone JM.Tumas W. Oxford University; New York: 2003.Reference Ris Wihthout Link - 9c
Chemical
Synthesis Using Supercritical Fluids
Jessop PG.Leitner W. Wiley-VCH; Weinheim: 1999.Reference Ris Wihthout Link - 9d
Leitner W. Acc. Chem. Res. 2002, 35: 746Reference Ris Wihthout Link - 9e
Beckman EJ. J. Supercrit. Fluids 2004, 28: 121Reference Ris Wihthout Link - 9f
Prajapati D.Gohain M. Tetrahedron 2004, 60: 815Reference Ris Wihthout Link - 10
Lu XB.Xiu JH.He R.Jin K.Luo LM.Feng X.
J. Appl. Catal. A 2004, 275: 73 - 13
Kong DL.He LN.Wang JQ. Catal. Commun. 2010, 11: 992 - CO2 activation by tertiary amines:
- 14a
Pérez ER.Franco DW. Tetrahedron Lett. 2002, 43: 4091Reference Ris Wihthout Link - 14b
Endo T.Nagai D. Macromolecules 2004, 37: 2007Reference Ris Wihthout Link - 14c
Phan L.Andreatta JR.Horvey LK.Edie CF.Luco AL.Mirchandani A.Darensbourg DJ.Jessop PG. J. Org. Chem. 2008, 73: 127Reference Ris Wihthout Link - 14d
Pereira FS.deAzevedo ER. Tetrahedron 2008, 64: 10097Reference Ris Wihthout Link - 14e
North M.Pasquale R. Angew. Chem. Int. Ed. 2009, 48: 2946Reference Ris Wihthout Link - 14f
Wykes A.MacNeil SL. Synlett 2007, 107Reference Ris Wihthout Link - 14g
Masahiro YF.MacFarlane DR. Electrochem. Commun. 2006, 8: 445Reference Ris Wihthout Link - 14h
Masahiro YF.Johansson K. Tetrahedron Lett. 2006, 47: 2755Reference Ris Wihthout Link - 14i
Ying AG.Chen XZ.Ye WD. Tetrahedron Lett. 2009, 50: 1653Reference Ris Wihthout Link - 15 Formation of Et2NH with
CO2 identified by ¹H NMR:
Kong DL.He LN.Wang JQ. Synlett 2010, 1276
Reference and Notes
Typical Procedure
for the Carboxylation of Aziridine with CO
2
In
a typical reaction, the carboxylation of aziridine with CO2 was
carried out in a 25 mL stainless steel autoclave. Aziridine (1 mmol)
was charged into the reactor at r.t. CO2 was introduced
into the autoclave, and then the mixture was stirred at predetermined
temperature for 20 min to reach the equilibration. The pressure
was then adjusted to the desired pressure, and the mixture was stirred
continuously. When the reaction finished, the reactor was cooled
in ice-water and CO2 was ejected slowly. An aliquot of
sample was taken from the resultant mixture and dissolved in dry
CH2Cl2 for GC analysis. GC analyses were performed
on Shimadzu GC-2014, equipped with a capillary column (RTX-5, 30 m × 0.25
mm × 0.25 µm) using a flame-ionization
detector. The residue was purified by column chromatography on silica
gel (eluting with 8:1 to 1:1 PE-EtOAc) to furnish the product.
The products were further identified by ¹H NMR, ¹³C
NMR, and MS which are consistent with those reported in the literature³a-j and
in good agreement with the assigned structures.
Spectral characteristics for representative
examples of the products were provided.
3-Ethyl-5-phenyl-2-oxazolidinone
(2a)
Colorless liquid. ¹H NMR
(300 MHz, CDCl3): δ = 1.17
(t, 3 H, J = 7.2
Hz), 3.29-3.45 (m, 3 H), 3.92 (t, 1 H, J = 8.7
Hz), 5.48 (t, 1 H, J = 7.8
Hz), 7.34-7.42 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 12.4,
38.8, 51.5, 74.2, 125.4, 128.6, 128.8, 138.8, 157.5. ESI-MS: m/z calcd for C11H13NO2: 191.09;
found: 192.29 [M + H]+,
214.38 [M + Na]+,
405.01 [2 M + Na]+.
3-Ethyl-4-phenyl-2-oxazolidinone (3a)
Colorless
liquid. ¹H NMR (300 MHz, CDCl3): δ = 1.05
(t, 3 H, J = 5.4
Hz), 2.79-2.88 (m, 1 H), 3.48-3.57 (m, 1 H), 4.10 (t,
1 H, J = 6.0
Hz), 4.62 (t, 1 H, J = 6.6
Hz), 4.81 (t, 1 H, J = 5.4
Hz),7.30-7.44 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 12.1,
36.9, 59.4, 69.8, 127.0, 129.0, 129.2, 137.9, 158.1. ESI-MS: m/z calcd for C11H13NO2:
191.09; found: 192.29 [M + H]+,
214.38 [M + Na]+.