Synlett 2010(13): 1927-1930  
DOI: 10.1055/s-0030-1258490
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Expedient Synthesis of Highly Functionalized Coumarin Derivatives through a Domino Reaction

Subban Kathiravan, Raghavachary Raghunathan*
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Fax: +91(44)22352494; e-Mail: ragharaghunathan@yahoo.com;
Further Information

Publication History

Received 4 May 2010
Publication Date:
09 July 2010 (online)

Abstract

The straightforward synthesis of novel pentacyclic and hexacyclic coumarin heterocycles in a one-pot domino reaction is described. The process enables the synthesis of diversified coumarins in high yields in a single step.

    References and Notes

  • 1 Tietze LF. Chem. Rev.  1996,  96:  115 
  • 2a Poulin J. Grise-Bard MC. Barriault L. Chem. Soc. Rev.  2009,  38:  3092 
  • 2b Ho TL. Tandem Organic Reactions   Wiley; New York: 1992. 
  • 2c Tietz LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1995,  107:  285 
  • 2d Bunce RA. Tetrahedron  1995,  51:  13103 
  • 3a Tietze LF. Brazche G. Gericke K. Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 3b Tietze LF. Spiegl DA. Brazel CC. Domino Reactions for the Efficient Synthesis of Natural Products, In Experiments in Green and Sustainable Chemistry   Wiley-VCH; Weinheim: 2009.  p.158-167  
  • 3c Tietze LF. Rackelmann N. The Domino-Knoevenagel-Hetero-Diels-Alder Reaction and Related Transformations, In Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005.  p.121-168  
  • 4a Nair RV. Fisher EP. Safe SH. Cortez C. Harvey RG. DiGiovanni J. Carcinogenesis  1991,  12:  65 
  • 4b Chen Y.-L. Wang T.-C. Lee H.-H. Tzeng C.-C. Chang Y.-L. Teng C.-M. Helv. Chim. Acta  1996,  79:  651 
  • 4c El-Ansary SL. Hassan AB. Egypt. J. Pharm. Sci.  1992,  33:  407 
  • 4d Ichikawa M. Ichibagase H. Chem. Pharm. Bull.  1969,  17:  2384 
  • 5a Ellis GP. Lockhart IM. Meeder-Nycz D. Schweizer EE. In Chromenes, Chromanones, and Chromones   Ellis GP. John Wiley and Sons; New York: 1977. 
  • 5b Kostova I. Curr. Med. Chem.  2005,  5:  29 
  • 6a Xu J. Kjer J. Sendker J. Wray V. Guan H. Edrada R. Mueller WEG. Bayer M. Lin W. Wu J. Proksch P. Bioorg. Med. Chem.  2009,  17:  7362 
  • 6b He HP. Shen YM. Zuo GY. Yang XS. Hao XJ. Helv. Chim. Acta  2003,  86:  3187 
  • 7 Takakusa H. Kikuchi K. Urano Y. Sakamoto S. Yamaguchi K. Nagano T. J. Am. Chem. Soc.  2002,  124:  1653 
  • 8a Sohrab MH. Hasan CM. Rashid MA. Pharmazie  2002,  57:  573 
  • 8b Kwak JH. Lee KB. Schmitz FJ.
    J. Nat. Prod.  2001,  64:  1081 
  • 8c Schuster N. Christiansen C. Jakupovic J. Mungai M. Phytochemistry  1993,  34:  1179 
  • 9 Bestmann HJ. Kern F. Schäfer D. Witschel MC. Angew. Chem., Int. Ed. Engl.  1992,  31:  795 
  • 10a Valizadeh H. Shockravi A. Tetrahedron Lett.  2005,  46:  3501 
  • 10b Bandyopadhyay C. Sur KR. Patra R. Sen A. Tetrahedron  2000,  56:  3583 
  • 10c De la Hoz A. Moreno A. Vazquez E. Synlett  1999,  608 
  • 11 Chang CP. Pradiuldi SV. Hong FE. Inorg. Chem. Commun.  2009,  12:  596 
  • 12a Tietze LF. Kettschau G. Gewert JA. Schuffenhauer A. Curr. Org. Chem.  1998,  2:  19 
  • 12b Tietze LF. Kettschau G. Top. Curr. Chem.  1997,  189:  1 
  • 13a Haung H.-S. Chiou J.-F. Fong Y. Hou C.-C. Lu Y.-C. Wang J.-Y. Shih J.-W. Pan Y.-R. Lin J.-J. J. Med. Chem.  2003,  46:  3300 
  • 13b Boger DL. Weinreb SM. In Hetero Diels-Alder Methodology in Organic Synthesis   Vol. 47:  Wasserman HH. Academic Press; San Diego: 1987.  p.167-204  
  • 13c Jorgenson KA. Angew. Chem. Int. Ed.  2000,  39:  3558 
  • 13d Cravotto G. Nano GM. Palmisano G. Tagliapietra S. Tetrahedron: Asymmetry  2001,  12:  707 
  • 14a Khoshkholgh MJ. Balalaie S. Gleiter R. Rominger F. Tetrahedron  2008,  64:  10924 
  • 14b Ramesh E. Raghunathan R. Tetrahedron Lett.  2008,  49:  1812 
  • 14c Wada E. Koga H. Kumaran G. Tetrahedron Lett.  2002,  43:  9397 
  • 14d Toyota M. Komori C. Ihara M. J. Org. Chem.  2000,  65:  7110 
  • 14e Tietze LF. Brand S. Brumby T. Fennen J. Angew. Chem., Int. Ed. Engl.  1990,  102:  675 
  • 15a Kathiravan S. Raghunathan R. Synlett  2009,  1126 
  • 15b Kathiravan S. Raghunathan R. Tetrahedron Lett.  2009,  50:  6116 
  • 15c Kathiravan S. Raghunathan R. Synlett  2010,  952 
  • 15d Ramesh E. Kathiresan M. Raghunathan R. Tetrahedron Lett.  2007,  48:  1835 
  • 15e Ramesh E. Raghunathan R. Tetrahedron Lett.  2008,  49:  1125 
16

Synthesis of Polycyclic Coumarin Derivative 3a - Typical Procedure
To a refluxing solution of coumarin 2 (1 mmol) in anhyd DMF (5 mL), aldehyde 1a (1mmol), piperidine (5 mol%) were added, and the reaction mixture was refluxed for 4-5 h until the disappearance of starting material as evidenced by TLC. After completion of the reaction, H2O (5 mL) was added, and the reaction mixture was extracted with EtOAc
(3 × 15 mL), dried (Na2SO4), and the solvent was evaporated. The residue was subjected to column chromatography using hexane-EtOAc (95:5).
Compound 3a: R f = 0.5; white solid, mp 112-114 ˚C. IR (KBr): 1635 cm. ¹H NMR (300 MHz, CDCl3): δ = 3.52 (s, 3 H), 4.35 (d, J = 11.4 Hz, 1 H), 4.57 (d, J = 11.4 Hz, 1 H), 4.86 (s, 1 H), 5.62 (s, 1 H), 6.58-7.85 (m, 13 H). ¹³ NMR (75 MHz, CDCl3): δ = 36.68, 48.60, 52.85, 61.91, 81.89, 104.21, 114.81, 116.00, 116.47, 117.79, 120.00, 122.87, 123.92, 126.59, 127.90, 128.42, 128.97, 129.23, 132.24, 134.00, 134.47, 152.47, 152.94, 158.50, 161.15, 170.56. HRMS (EI): m/z = 441.1330 [M+].

17

Crystallographic data of compound 3f in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication no. CCDC-768492. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 IEZ, UK [fax: +44(1233)336033 or email: deposit@ccdc.cam.ac.uk].