References
<A NAME="RF57310SS-1">1</A>
Weymouth-Wilson AC.
Nat. Prod. Rep.
1997,
14:
99
<A NAME="RF57310SS-2">2</A>
Paloma LG.
Smith JA.
Chazin WJ.
Nicolaou KC.
J.
Am. Chem. Soc.
1994,
116:
3697
<A NAME="RF57310SS-3">3</A>
Nedal A.
Zotchev SB.
Appl. Microbiol.
Biotechnol.
2004,
64:
7
<A NAME="RF57310SS-4">4</A>
Matsushima Y.
Kino J.
Tetrahedron Lett.
2005,
46:
8609
<A NAME="RF57310SS-5">5</A>
Matsushima Y.
Kino J.
Tetrahedron Lett.
2006,
47:
8777
<A NAME="RF57310SS-6">6</A>
Matsushima Y.
Kino J.
Tetrahedron
2008,
64:
3943
<A NAME="RF57310SS-7">7</A>
Matsushima Y.
Kino J.
Eur. J. Org. Chem.
2010,
2206
<A NAME="RF57310SS-8">8</A> For the latest review on novobiocin
related aminocoumarins, see:
Heide L.
Biotechnol.
Adv.
2009,
27:
1006
<A NAME="RF57310SS-9">9</A>
García IG.
Stevenson CEM.
Usón I.
Meyers CFL.
Walsh CT.
Lawson DM.
J. Mol. Biol.
2010,
395:
390
<A NAME="RF57310SS-10">10</A>
Donnelly A.
Blagg BSJ.
Cur. Med.
Chem.
2008,
15:
2702
<A NAME="RF57310SS-11A">11a</A>
Vaterlaus BP.
Kiss J.
Spiegelberg H.
Helv. Chim. Acta
1964,
47:
381
<A NAME="RF57310SS-11B">11b</A>
Kiss J.
Spiegelberg H.
Helv. Chim. Acta
1964,
47:
398
<A NAME="RF57310SS-11C">11c</A>
Klemer A.
Waldmann M.
Liebigs Ann. Chem.
1986,
221
<A NAME="RF57310SS-11D">11d</A>
Laurin P.
Ferroud D.
Klich M.
Dupuis-Hamelin C.
Mauvais P.
Lassaigne P.
Bonnefoy A.
Musicki B.
Bioorg. Med. Chem. Lett.
1999,
9:
2079
<A NAME="RF57310SS-11E">11e</A>
Periers A.-M.
Laurin P.
Benedetti Y.
Lachaud S.
Ferroud D.
Iltis A.
Haesslein J.-L.
Klich M.
L’Hermite G.
Musicki B.
Tetrahedron Lett.
2000,
41:
867
<A NAME="RF57310SS-11F">11f</A>
Takeuchi M.
Taniguchi T.
Ogasawara K.
Tetrahedron
Lett.
2000,
41:
2609
<A NAME="RF57310SS-11G">11g</A>
Gammon DW.
Hunter R.
Wilson S.
Tetrahedron Lett.
2002,
43:
3141
<A NAME="RF57310SS-11H">11h</A>
Ješelnik M.
Leban I.
Polanc S.
Kočevar M.
Org. Lett.
2003,
5:
2651
<A NAME="RF57310SS-11I">11i</A>
Hanessian S.
Auzzas L.
Org. Lett.
2008,
10:
261
<A NAME="RF57310SS-11J">11j</A>
He Y.
Xue J.
Zhou Y.
Yang J.
Yu X.
Tetrahedron Lett.
2009,
50:
2317 ; this is the latest paper, however, l-(+)-noviose was reported as
a by-product during the synthesis of noviose 1,2-acetonide by the
modified route given in references 11d and 11e
<A NAME="RF57310SS-12A">12a</A>
Pankau WM.
Kreiser W.
Helv.
Chim. Acta
1998,
81:
1997
<A NAME="RF57310SS-12B">12b</A>
Pankau WM.
Kreiser W.
Tetrahedron
Lett.
1998,
39:
2089
<A NAME="RF57310SS-12C">12c</A>
Yu XM.
Shen G.
Blagg BSJ.
J.
Org. Chem.
2004,
69:
7375
<A NAME="RF57310SS-12D">12d</A>
Reddy DS.
Srinivas G.
Rajesh BM.
Kannan M.
Rajale TV.
Iqbal J.
Tetrahedron
Lett.
2006,
47:
6373
<A NAME="RF57310SS-13">13</A>
Donnelly A.
Zhao H.
Kusuma BR.
Blagg BSJ.
Med. Chem.
Commun.
2010,
1:
165
<A NAME="RF57310SS-14">14</A> During our course of pursuing the
effective synthesis of osmundalactones, an appealing method for
the δ-lactoniza-tion accompanied by trans-cis isomerization was reported:
Ono M.
Zhao XY.
Shida Y.
Akita H.
Tetrahedron
2007,
63:
10140
<A NAME="RF57310SS-15">15</A>
Yu X.-Q.
Yoshimura F.
Ito F.
Sasaki M.
Hirai A.
Tanino K.
Miyashita M.
Angew.
Chem. Int. Ed.
2008,
47:
750
<A NAME="RF57310SS-16A">16a</A> Starting
chiral epoxide (-)-7b was prepared
from 3-methylbut-2-en-1-ol in 3 steps according to the literature:
Krief A.
Dumont W.
Baillieul D.
Synthesis
2002,
2019
<A NAME="RF57310SS-16B">16b</A>
(-)-7b: [α]D
²6.9 -33.2
(c 1.05, CHCl3) {Lit.¹6 [α]D
²0 -30.64
(c 1.155, CHCl3)};
IR (neat): 2954, 1724, 1657, 1437, 1379, 1319, 1296, 1263, 1173,
980, 804 cm-¹; ¹H NMR
(270 MHz, CDCl3): δ = 6.84 (dd, J = 6.5, 15.7
Hz, 1 H), 6.12 (dd, J = 1.1,
15.6 Hz, 1 H), 3.76 (s, 3 H), 3.33 (dd, J = 0.9,
6.4 Hz, 1 H), 1.41 (s, 3 H), 1.29 (s, 3 H); ¹³C
NMR (67.8 MHz, CDCl3): δ = 166.1, 143.1,
124.4, 62.1, 61.7, 51.7, 24.6, 18.6
<A NAME="RF57310SS-17A">17a</A> Starting
diene 8 was prepared according to the literature:
Balu N.
Thomas JV.
Bhat SV.
J. Med. Chem.
1991,
34:
2821
<A NAME="RF57310SS-17B">17b</A>
See also: ref. 19
<A NAME="RF57310SS-17C">17c</A>
8:
IR (neat): 2981, 2933, 1711, 1639, 1612, 1446, 1367, 1308, 1277,
1213, 1161, 1140, 1039, 991, 879 cm-¹; ¹H
NMR (270 MHz, CDCl3): δ = 7.56
(dd, J = 11.5,
15.2 Hz, 1 H), 5.99 (br dq, J = 1.1, 11.7
Hz, 1 H), 5.76 (d, J = 15.2
Hz, 1 H), 4.20 (q, J = 7.1
Hz, 2 H), 1.89 (d, J = 0.9
Hz, 3 H), 1.88 (s, 3 H), 1.30 (t, J = 7.1 Hz,
3 H); ¹³C NMR (67.8 MHz, CDCl3): δ = 167.7,
146.2, 141.0, 123.7, 118.6, 60.1, 26.5, 18.9, 14.3
<A NAME="RF57310SS-18">18</A>
Marschall H.
Penninger J.
Weyerstahl P.
Liebigs
Ann. Chem.
1982,
49
<A NAME="RF57310SS-19">19</A>
Uchida K.
Ishigami K.
Watanabe H.
Kitahara T.
Tetrahedron
2007,
63:
1281
<A NAME="RF57310SS-20">20</A>
Acid-catalyzed epoxide opening of
(±)-7a (cat. H2SO4-MeOH
or BF3˙OEt2-MeOH) resulted
in a ratio of approximately 1:4 to 1:6 (desired/undesired),
which was roughly estimated by ¹H NMR analysis
of the crude products.
<A NAME="RF57310SS-21">21</A>
Nagumo S.
Nakano T.
Hata K.
Mizukami M.
Miyashita M.
Org. Lett.
2010,
12:
908
<A NAME="RF57310SS-22A">22a</A>
Achmatowicz O.
Grynkiewicz G.
Szechner B.
Tetrahedron
1976,
32:
1051
<A NAME="RF57310SS-22B">22b</A>
This article was occasionally
quoted as the reference for the synthesis of (±)-noviose
by mistake, which, however, certainly includes ¹H NMR
data of synthesized methyl dl-novioside
along with those of naturally derived noviose.