Synthesis 2011(4): 674-680  
DOI: 10.1055/s-0030-1258401
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of Spiro Tricyclic Polyoxygenated Compounds: Solvolytic Behavior of 1-(Tosyloxymethyl)spiro[2.4]hepta-4,6-diene

Céline Reynauda, Michel Giorgib, Henri Doucet*c, Maurice Santelli*a
a Laboratoire Chimie Provence, associé au CNRS, UMR 6264, Faculté des Sciences de Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
Fax: +33(4)91288758; e-Mail: [email protected];
b Spectropôle, Faculté des Sciences de St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
c Institut Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes ‘Catalyse et Organometalliques’, Campus de Beaulieu, 35042 Rennes, France
Fax: +33(2)23236939; e-Mail: [email protected];
Further Information

Publication History

Received 7 October 2010
Publication Date:
12 January 2011 (online)

Abstract

The Diels-Alder reaction of spirobicyclic cyclopentadiene derivatives, prepared by reaction of cyclopentadienyllithium and epichlorohydrin, with maleic anhydride gave a simple access to spiro tricyclic polyoxygenated compounds of synthetic interest. The solvolytic behavior of 1-(tosyloxymethyl)spiro[2.4]hepta-4,6-diene, a 5-spirocyclopentadiene, shows that the ionization of the tosylate was unlikely.

    References

  • 1a Laurenti D. Feuerstein M. Pèpe G. Doucet H. Santelli M. J. Org. Chem.  2001,  66:  1633 
  • 1b Doucet H. Santelli M. Synlett  2006,  2001 
  • 2 Reynaud C. Fall Y. Feuerstein M. Doucet H. Santelli M. Tetrahedron  2009,  65:  7440 
  • 3a Bangert K. Boekelheide V. Tetrahedron Lett.  1963,  4:  1119 
  • 3b Corey EJ. Shiner CS. Volante RP. Cyr CR. Tetrahedron Lett.  1975,  16:  1161 
  • 3c Lokensgard DM. Dougherty DA. Hilinski EF. Berson JA. Proc. Natl. Acad. Sci. U.S.A.  1980,  77:  3090 
  • 3d Attah-Poku SK. Gallacher G. Ng AS. Taylor LEB. Alward SJ. Fallis AG. Tetrahedron Lett.  1983,  24:  677 
  • 3e Gallacher G. Ng AS. Attah-Poku SK. Antczak K. Alward SJ. Kingston JF. Fallis AG. Can. J. Chem.  1984,  62:  1709 
  • 3f González AG. Darias J. Díaz F. Tetrahedron Lett.  1984,  25:  2697 
  • 3g Antczak K. Kingston JF. Fallis AG. Can. J. Chem.  1985,  63:  993 
  • 3h Antczak K. Kingston JF. Fallis A. Hanson AW. Can. J. Chem.  1987,  65:  114 
  • 3i Ledford BE. Carreira EM. J. Am. Chem. Soc.  1995,  117:  11811 
  • 3j Starr JT. Baudat A. Carreira EM. Tetrahedron Lett.  1998,  39:  5675 
  • 3k Starr JT. Koch G. Carreira EM. J. Am. Chem. Soc.  2000,  122:  8793 
  • 3l Gorman JST. Lynch V. Pagenkopf BL. Young B. Tetrahedron Lett.  2003,  44:  5435 
  • 3m Avilov DV. Malusare MG. Arslancan E. Dittmer DC. Org. Lett.  2004,  6:  2225 
  • 3n Nadany AE. Mckendrick JE. Tetrahedron Lett.  2007,  48:  4071 
  • 5 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision E.01   Gaussian Inc.; Wallingford (CT): 2004. 
  • 6 Saunders J. Tipney DC. Robins P. Tetrahedron Lett.  1982,  23:  4147 
  • 7a Coxon JM. McDonald DQ. Tetrahedron Lett.  1992,  33:  651 
  • 7b Werstiuk NH. Ma J. Macaulay JB. Fallis AG. Can. J. Chem.  1992,  70:  2798 
  • 7c For recent studies and references, see: Ishida M. Itakura M. Tashiro H. Tetrahedron Lett.  2008,  49:  1804 
  • 9 Oda M. Breslow R. Tetrahedron Lett.  1973,  14:  2537 
  • 10 Warrener RN. Harrison PA. Sterns M. Russell RA. J. Chem. Soc., Chem. Commun.  1984,  546 
  • 11a Kornblum N. Jones WJ. Anderson GJ. J. Am. Chem. Soc.  1959,  81:  4113 
  • 11b Smith MB. March J. March’s Advanced Organic Chemistry   6th ed.:  Wiley; Hoboken (NJ): 2007.  p.1765 
  • 12 The silver-assisted solvolysis of cyclopentadien-5-yl iodide is at least 105 times slower than that of cyclopentyl iodide, see: Breslow R. Hoffman JM. J. Am. Chem. Soc.  1972,  94:  2110 
  • 13 de Vries EFJ. Brussee J. van der Gen A. J. Org. Chem.  1994,  59:  7133 
4

For example, for syn-isomers 2a and 2c, the chemical shifts of carbon atoms of anhydrides are different, and for anti-isomers 3a and 3c the chemical shifts are identical.

8

Special Issue: Nonclassical Carbocations, Acc. Chem. Res. 1983, 16, 425

14

X-ray crystallography: CCDC-794286 (for 3b), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; or e-mail: [email protected]].