Synthesis 2010(21): 3615-3622  
DOI: 10.1055/s-0030-1258229
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Formation of 1,2-Dihydroquinoline-3-carboxylic Acid Derivatives from Methyl 3-(Arylamino)acrylates with Hydrogen Iodide

Shoji Matsumoto*, Takahiro Mori, Motohiro Akazome
Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
Fax: +81(43)2903401; e-Mail: smatsumo@faculty.chiba-u.jp;
Further Information

Publication History

Received 28 June 2010
Publication Date:
25 August 2010 (online)

Abstract

The reaction of methyl 3-(arylamino)acrylates with hydrogen iodide gave 1,2-dihydroquinoline-3-carboxylic acid derivatives at room temperature. This reaction proceeds efficiently in alcoholic solvent; bulky tert-butyl alcohol is the best solvent to give the 1,2-dihydroquinoline derivatives. It is particularly interesting that hydrogen iodide is the most efficient acid to achieve this reaction in tert-butyl alcohol. Various substituents at the phenyl ring are applicable. Compounds bearing meta-substituted phenyl ring with electron-donating group led to the corresponding 1,2-dihydroquinoline derivatives in good yields.

    References

  • 1a Kothandaraman P. Foo SJ. Chan PWH. J. Org. Chem.  2009,  74:  5947 
  • 1b Liu X.-Y. Ding P. Huang J.-S. Che C.-M. Org. Lett.  2007,  9:  2645 
  • 1c Yi CS. Yun SY. J. Am. Chem. Soc.  2005,  127:  17000 
  • 1d Luo Y. Li Z. Li C.-J. Org. Lett.  2005,  7:  2675 
  • 1e Yi CS. Yun SY. Guzei IA. J. Am. Chem. Soc.  2005,  127:  5782 
  • 1f Williamson NM. Ward AD. Tetrahedron  2005,  61:  155 
  • 1g Ranu BC. Hajra A. Dey SS. Jana U. Tetrahedron  2003,  59:  813 
  • 1h Wiliamson NM. March DR. Ward AD. Tetrahedron Lett.  1995,  42:  7721 
  • 2a Martínez-Estíbalez U. Sotomayor N. Lete E. Tetrahedron Lett.  2007,  48:  2919 
  • 2b Theeraladanon C. Arisawa M. Nishida A. Nakagawa M. Tetrahedron  2004,  60:  3017 
  • 3a Migneault D. Bernstein MA. Lau CK. Can. J. Chem.  1995,  73:  1506 
  • 3b Grignon-Dubois M. Diaba F. Grellier-Marly M.-C. Synthesis  1994,  800 
  • 3c Qiang LG. Baine NH. J. Org. Chem.  1988,  53:  4218 
  • 3d Arduini A. Bigi F. Casiraghi G. Casnati G. Sartori G. Synthesis  1981,  975 
  • 3e Dauphinee GA. Forrest TP. Can. J. Chem.  1978,  56:  632 
  • 4a Voutchkova AM. Gnanamgari D. Jakobsche CE. Butler C. Miller SJ. Parr J. Crabtree RH. J. Organomet. Chem.  2008,  693:  1815 
  • 4b Fukuzumi S. Fujita M. Noura S. Ohkubo K. Suenobu T. Araki Y. Ito O. J. Phys. Chem. A  2001,  105:  1857 
  • 4c Zhu D. Kochi JK. Organometallics  1999,  18:  161 
  • 4d Fukuzumi S. Kitano T. Ishikawa K. Tanaka T. Chem. Lett.  1989,  1599 
  • 5a Amiot F. Cointeaux L. Silve EJ. Alexakis A. Tetrahedron  2004,  60:  8221 
  • 5b Rezgui F. Mangeney P. Alexakis A. Tetrahedron Lett.  1999,  40:  6241 
  • 5c Paris D. Cottin M. Demonchaux P. Augert G. Dupassieux P. Lenoir P. Peck MJ. Jasserand D. J. Med. Chem.  1995,  38:  669 
  • 5d Goldstein SW. Dambek PJ. Synthesis  1989,  221 
  • 5e Ramadas SR. Krishna MV. Curr. Sci.  1981,  50:  120 
  • 5f Crawforth CE. Meth-Cohn O. Russell CA.
    J. Chem. Soc., Perkin Trans. 1  1972,  2807 
  • 5g Elderfield RC. Wark BH. J. Org. Chem.  1962,  27:  543 
  • 6a Li H. Wang J. Xie H. Zu L. Jian W. Duesler EN. Wang W. Org. Lett.  2007,  9:  965 
  • 6b Ballini R. Bosica G. Fiorini D. Palmieri A. Green Chem.  2005,  7:  825 
  • 6c Yan M.-C. Tu Z. Lin C. Ko S. Hsu J. Yao C.-F.
    J. Org. Chem.  2004,  69:  1565 
  • 6d Kobayashi K. Nakahashi R. Mano M. Morikawa O. Konisi H. Bull. Chem. Soc. Jpn.  2003,  76:  1257 
  • 6e Apple IA. Meth-Cohn O. ARKIVOC  2002,  (vi):  4 
  • 6f Kobayashi K. Nakahashi R. Shimizu A. Kitamura T. Morikawa O. Konishi H. J. Chem. Soc., Perkin Trans. 1  1999,  1547 
  • 6g Kobayashi K. Takabatake H. Kitamura T. Morikawa O. Konishi H. Bull. Chem. Soc. Jpn.  1999,  70:  1697 
  • 6h Yavari I. Esmaili AA. Ramazani A. Bolbol-Amiri AR. Monatsh. Chem.  1997,  128:  927 
  • 7 Matsumoto S. Ogura K. Tetrahedron Lett.  2007,  48:  1117 
  • 8 Sridharam Y. Avendaño C. Menéndez C. Tetrahedron  2007,  63:  673 
  • 9a Cui H.-L. Feng X. Peng J. Lei J. Jiang K. Chen Y.-C. Angew. Chem. Int. Ed.  2009,  48:  5737 
  • 9b Gusak KN. Kozlov NG. Russ. J. Org. Chem.  2007,  43:  706 
  • 9c Lu G. Malinakova HC. J. Org. Chem.  2004,  69:  4701 
  • 9d Cheng Y. Yang H. Meth-Cohn O. Org. Biomol. Chem.  2003,  1:  3605 
  • 9e Yamaguchi R. Tanaka M. Matsuda T. Okano T. Nagura T. Fujita K. Tetrahedron Lett.  2002,  43:  8871 
  • 9f Yamaguchi R. Nakayasu T. Hatano B. Nagura T. Kozima S. Fujita K. Tetrahedron  2001,  57:  109 
  • 9g Yamaguchi R. Omoto Y. Miyake M. Fujita K. Chem. Lett.  1998,  547 
  • 9h Sanechika K. Kajigaeshi S. Kanemasa S. Chem. Lett.  1977,  861 
  • 10 Mohri K. Kanie A. Horiguchi Y. Isobe K. Heterocycles  1999,  51:  2377 
  • 12a Harris JM. McManus SP. In Nucleophilicity   American Chemical Society; Washington DC: 1987. 
  • 12b Smith MB. March J. March’s Advanced Organic Chemistry   5th ed.:  Wiley; New York: 2001.  p.438-445  
  • 13 Fu PP. Harvey RG. Chem. Rev.  1978,  78:  317 
  • 14a Hoggett JG. Moodie RB. Penton JR. Schofield K. In Nitration and Aromatic Reactivity   Cambridge University Press; Cambridge: 1971.  p.122-163  
  • 14b Smith MB. March J. March’s Advanced Organic Chemistry   5th ed.:  Wiley; New York: 2001.  p.681-695  
  • 15a Bhatt MV. Kulkarni SU. Synthesis  1983,  249 
  • 15b Tiecco M. Synthesis  1988,  749 
  • 16 Bozell JJ. Hegedus LS. J. Org. Chem.  1981,  46:  2561 
  • 17 Nicolau KC. Gross JL. Kerr MA. J. Heterocycl. Chem.  1996,  33:  735 
  • 18 Bottomley W. Tetrahedron Lett.  1967,  1997 
  • 19 Zhou J.-C. Molecules  1999,  4:  M118 
11

MeO-5a can be converted to 5a in 86% yield by the reaction of MeO-5a with HI in MeCN.