Synthesis 2010(16): 2823-2827  
DOI: 10.1055/s-0030-1258138
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

An Efficient Multicomponent Synthesis of Polysubstituted Pyrrolidines and Tetrahydropyrimidines Starting Directly from Nitro Compounds in Water [¹]

Biswanath Das*, Digambar Balaji Shinde, Boddu Shashi Kanth, Gandham Satyalakshmi
Organic Chemistry Division-1, Indian Institute of Chemical Technology, Hyderabad 500 007, India
Fax: +91(40)27160512; e-Mail: biswanathdas@yahoo.com;
Further Information

Publication History

Received 15 April 2010
Publication Date:
30 June 2010 (online)

Abstract

A distinct approach for the synthesis of 1,3,3-trisubstituted 4,5-dioxopyrrolidines and 1,3,4,5-tetrasubstituted 1,2,3,6-tetrahydropyrimidines has been discovered, in the form of a three-component reaction of nitroarenes, formaldehyde, and dialkyl acetylenedicarboxylates using indium in dilute aqueous HCl at room temperature. The molar ratios of these substrates are 1:1:4 and 2:1:4 for the preparation of dioxopyrrolidines and tetrahydropyrimidines, respectively. The reactions involve the reduction of nitro compounds to amines, which are simultaneously attacked by dialkyl acetylenedicarboxylates and formaldehyde. The products are formed in good to high yields.

1

Part 202 in the series: ‘Studies on Novel Synthetic Methodologies’.

    References

  • 2a Janecki T. Blaszczyk E. Studzian K. Janecka A. Krajenska U. Rozalski M. J. Med. Chem.  2005,  48:  3516 
  • 2b Hong CY. Kim YK. Chang JH. Kim SH. Choi H. Nam DH. Kim YZ. Kwak JH. J. Med. Chem.  1997,  40:  3584 
  • 2c Raj AA. Raghunathan R. Sridevi Kumari MR. Raman N. Bioorg. Med. Chem.  2003,  11:  407 
  • 3a Nair V. Chi G. Ptak R. Neamati N. J. Med. Chem.  2006,  49:  445 
  • 3b Pattarimi P. Smeyne RJ. Morgan JI. Neuroscience  2007,  145:  654 
  • 3c Messer WS. Abuh YF. Paryasamy S. Ngur DO. Edger MAN. Eissadi AA. Sheih S. Dunbar PG. Roknich S. Rho T. Fang Z. Ojo B. Zhang H. Huzl JJ. Nagy PI. J. Med. Chem.  1997,  40:  1230 
  • 4 Tozkoparan B. Yarim M. Sarac S. Ertan M. Kelicun P. Altinoc G. Demirdamar R. Arch. Pharm. Pharm. Med. Chem.  2000,  333:  415 
  • For recent examples of multicomponent reactions, see:
  • 5a Ohno H. Ohta Y. Oishi S. Fujii N. Angew. Chem. Int. Ed.  2007,  46:  2295 
  • 5b Komagawa S. Saito S. Angew. Chem. Int. Ed.  2006,  45:  2446 
  • 5c Yoshida H. Fukushima H. Ohshita J. Kunai A. J. Am. Chem. Soc.  2006,  128:  11040 
  • 5d Dondas H. Fishwick CWG. Gai X. Grigg R. Kilner C. Dumrongchai N. Kongkathip B. Kongkathip N. Polysuk C. Sridharan V. Angew. Chem. Int. Ed.  2005,  44:  7570 
  • 5e Pache S. Lautens M. Org. Lett.  2003,  5:  4827 
  • 6a Cao H. Jiang H.-F. Qi C.-R. Yao W.-J. Chem H.-J. Tetrahedron Lett.  2009,  50:  1209 
  • 6b

    Srikrishna A., Sridharan M., Prasad K. R.; Tetrahedron; 2010, 66: in press; DOI: 10.1016/ j.tet.2010.03.084

  • 7a Das B. Banerjee J. Mahender G. Majhi A. Org. Lett.  2004,  6:  3349 
  • 7b Das B. Holla H. Venkateswalu K. Majhi A. Tetrahedron Lett.  2005,  46:  8895 
  • 7c Das B. Satyalakshmi G. Suneel K. Shashikanth B. Tetrahedron Lett.  2008,  49:  7209 
  • 8 Ranu BC. Eur. J. Org. Chem.  2000,  2347 
  • 9 Lee JC. Choi KII. Koh HY. Kang Y. Kuin Y. Kang Y. Cho YS. Synthesis  2001,  81 
1

Part 202 in the series: ‘Studies on Novel Synthetic Methodologies’.