Subscribe to RSS
DOI: 10.1055/s-0030-1258090
Brønsted Acid-Thiourea Co-catalysis: Asymmetric Synthesis of Functionalized 1,4-Dihydropyridines from β-Enamino Esters and α,β-Unsaturated Aldehydes
Publication History
Publication Date:
11 June 2010 (online)

Abstract
A Brønsted acid and a novel thiourea derivative co-catalyze the addition of β-enamino esters to α,β-unsaturated aldehydes leading to functionalized 1,4-dihydropyridines with moderate to good enantioselectivity. A regioselective synthesis of 1,2-dihydropyridines from α,β-unsaturated aldehydes is also described.
Key words
asymmetric organocatalysis - Brønsted acid - thiourea - 1,4-dihydropyridines - β-enamino esters - α,β-unsaturated aldehydes
- 1
Rovnyak GC.Kimball SD.Beyer B.Cucinotta G.Dimarco JD.Gougoutas J.Hedberg A.Malley M.McCarthy JP.Zhang R.Mereland S. J. Med. Chem. 1995, 38: 119 - 2a
Hilgeroth A. Mini-Rev. Med. Chem. 2002, 2: 235Reference Ris Wihthout Link - 2b
Hilgeroth A.Lilie H. Eur. J. Med. Chem. 2003, 38: 495Reference Ris Wihthout Link - 3
Straub T.Boesenberg C.Gekeler V.Boege F. Biochemistry 1997, 36: 10777 - 4a
Robert J.Jarry C. J. Med. Chem. 2003, 46: 4805Reference Ris Wihthout Link - 4b
Avendaño C.Menéndez JC. Med. Chem. Rev. Online 2004, 1: 419Reference Ris Wihthout Link - 5
Donkor IO.Zhou X.Schmidt J.Agrawal KC.Kishore V. Bioorg. Med. Chem. 1998, 6: 563 - 6a
Lelais G.MacMillan DWC. Aldrichimica Acta 2006, 39: 79Reference Ris Wihthout Link - 6b
You S.-L. Chem. Asian J. 2007, 2: 820Reference Ris Wihthout Link - 6c
Rueping M.Sugiono E.Schoepke FR. Synlett 2010, 852Reference Ris Wihthout Link - 7a
Su W.Li J.Zheng Z.Shen Y. Tetrahedron Lett. 2005, 46: 6037Reference Ris Wihthout Link - 7b
Reddy KR.Reddy CV.Mahesh M.Raju PVK.Reddy VVN. Tetrahedron Lett. 2003, 44: 8173Reference Ris Wihthout Link - 7c
Maiti G.Kundu P.Guin C. Tetrahedron Lett. 2003, 44: 2757Reference Ris Wihthout Link - 7d
Lu J.Ma H. Synlett 2000, 63Reference Ris Wihthout Link - 7e
Hu EH.Sidler DR.Dolling U.-H. J. Org. Chem. 1998, 63: 3454Reference Ris Wihthout Link - 8a
Hantzsch A. Ann. Chem. 1882, 1: 215Reference Ris Wihthout Link - 8b
Vanden Eynde JJ.Mayence A. Molecules 2003, 8: 381Reference Ris Wihthout Link - 8c
Simon C.Constantieux T.Rodriguez J. Eur. J. Org. Chem. 2004, 4957Reference Ris Wihthout Link - For selected recent reports, see:
- 9a
Maiti S.Menendez JC. Synlett 2009, 2249Reference Ris Wihthout Link - 9b
Wan J.-P.Gan S.-F.Sun G.-L.Pan Y.-J. J. Org. Chem. 2009, 74: 2862Reference Ris Wihthout Link - 9c
Kumar A.Marurya RA. Tetrahedron 2008, 64: 3477Reference Ris Wihthout Link - 9d
Bartoli G.Babiuch K.Bosco M.Carlone A.Galzerano P.Melchiorre P.Sambri L. Synlett 2007, 2897Reference Ris Wihthout Link - 9e
Sridharan V.Perumal PT.Avendano C.Menendez JC. Tetrahedron 2007, 63: 4407Reference Ris Wihthout Link - 9f
Ishar MPS.Kumar K.Kaur S.Kumar S.Girdhar NK.Sachar S.Marwaha A.Kapoor A. Org. Lett. 2001, 3: 2133Reference Ris Wihthout Link - 10
Jie JJ.Yu J.Sun X.-X.Rao Q.-Q.Gong L.-Z. Angew. Chem. Int. Ed. 2008, 47: 2458 - 11
Moreau J.Duboc A.Hubert C.Hurvois J.-P.Renaud J.-L. Tetrahedron Lett. 2007, 48: 8647 - For reviews, see:
- 12a
Miyabe H.Takemoto Y. Bull. Chem. Soc. Jpn. 2008, 81: 785Reference Ris Wihthout Link - 12b For related papers, see:
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299Reference Ris Wihthout Link - 12c
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672Reference Ris Wihthout Link - 12d
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119Reference Ris Wihthout Link - 12e
Inokuma T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2006, 128: 9413Reference Ris Wihthout Link - 13a
Davis TA.Wilt JC.Johnston JN. J. Am. Chem. Soc. 2010, 132: 2880Reference Ris Wihthout Link - 13b
Nugent BM.Yoder RA.Johnston JN. J. Am. Chem. Soc. 2004, 126: 3418Reference Ris Wihthout Link - 13c
Ishihara K.Nakano K.Akakura M. Org. Lett. 2008, 10: 2893Reference Ris Wihthout Link - 13d
Ishihara K.Nakano K. J. Am. Chem. Soc. 2007, 129: 8930Reference Ris Wihthout Link - 13e
Ishihara K.Nakano K. J. Am. Chem. Soc. 2005, 127: 10504Reference Ris Wihthout Link - 14a
Klausen RS.Jacobsen EN. Org. Lett. 2009, 11: 887Reference Ris Wihthout Link - 14b
Reiseman SE.Doyle AG.Jacobsen EN. J. Am. Chem. Soc. 2008, 130: 7198Reference Ris Wihthout Link - 14c
Raheem IT.Thiara PS.Peterson EA.Jacobsen EN. J. Am. Chem. Soc. 2007, 129: 13404Reference Ris Wihthout Link
References and Notes
When 2a (E/Z = 25:75)
was reacted with 3a in the presence of
DFA-(S,S)-1c, 4aa was obtained
in 50% ee (compared
to entry 8 in Table
[¹]
). Therefore we concluded
that the stereochemistry of the enamino esters would not effect
to the enantioselectivities.
The absolute configuration of the thiourea catalysts described has been assigned based on the known configuration of the starting 1,2-diaminocyclohexane or has been established by X-ray-analysis (CCDC768496).
17In addition to toluene, we tested a chlorinated solvent (CH2Cl2) and ethers (THF, Et2O). Lower temperature (0 ˚C) led to a decrease in yield (<5%), while higher temperatures (50 ˚C) and catalyst loading (20 mol%) led to an increased yield but lower ee (28%, 55% ee). The addition of molecular sieves (3 Å, 4 Å) inhibited the reaction, while other additives (NaSO4, MgSO4) led to a decrease in enantioselectivity without improving the yield.
18
Typical Procedure
for the Reaction of 2j and 3a Catalyzed by Thiourea 1g - DFA
To
a solution of cinnamaldehyde (3a, 17.7
mg, 0.10 mmol) in toluene (0.40 mL) were added thiourea 1f (5.4 mg, 0.010 mmol) and 0.1 M difluoroacetic
acid in toluene solution (100 µL, 0.010 mmol) at r.t. To
this mixture was added dropwise (50 µL/30 min)
a solution of 2j (22.0 mg, 0.10 mmol) in toluene
(0.50 mL) at r.t. After being stirred at the same temperature for
12 h the reaction mixture was concentrated in vacuo. The resulting
residue was purified by silica gel chromatography (hexane-EtOAc = 5:1)
to give 4ja (30.8 mg, 81%) as
a yellow oil.
(
R
)-Ethyl 1-Benzyl-2-methyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3-carboxylate (4ja)
IR (ATR): 2979, 2925, 1684,
1516 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 8.13 (d, J = 8.8 Hz,
2 H), 7.39 (d, J = 8.8 Hz,
2 H), 7.38-7.31 (m, 3 H), 7.22-7.20 (m, 2 H),
6.02 (d, J = 7.6
Hz, 1 H), 4.93 (dd, J = 7.6,
5.5 Hz, 1 H), 4.78 (d, J = 5.5
Hz, 1 H), 4.69 (d, J = 16.8
Hz, 1 H), 4.59 (d, J = 16.8 Hz,
1 H), 3.99 (q, J = 7.1
Hz, 2 H), 2.46 (s, 3 H), 1.09 (t, J = 7.1
Hz, 3 H) ppm. ¹³C NMR (125 MHz, CDCl3): δ = 168.3,
155.9, 149.8, 146.3, 137.6, 130.3, 129.0, 128.1, 127.7, 126.2, 123.6,
106.6, 99.3, 59.5, 53.8, 40.5, 16.0, 14.2. MS (FAB+): m/z (%) = 378
(100) [M+]. HRMS (FAB+):
m/z calcd for C22H22N2O4 [M+]:
378.1580; found: 378.1578. HPLC (CHIRALCEL AD-H, hexane-2-PrOH = 90:10,
flow rate 1.0 mL/min, 254 nm): t
r(minor) = 12.0
min, t
r(major) = 15.3
min. A sample with 80% ee gave [α]D
²³ +309.8
(c 1.36, CHCl3).