Synlett 2010(15): 2240-2243  
DOI: 10.1055/s-0030-1258032
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Photodecarboxylative Additions of α-Thioalkyl-Substituted Carboxylates to Alkyl Phenylglyoxylates

Su Bee Tana, Oksana Shvydkiva, Jana Fiedlera, Fadi Hatouma, Kieran Nolana, Michael Oelgemöller*b
a Dublin City University, School of Chemical Sciences and NCSR, Glasnevin, Dublin 14, Ireland
b James Cook University, School of Pharmacy and Molecular Sciences, Townsville, Queensland 4811, Australia
Fax: +61(7)47816078; e-Mail: michael.oelgemoeller@jcu.edu.au;
Further Information

Publication History

Received 25 May 2010
Publication Date:
12 August 2010 (online)

Abstract

Irradiations of alkyl phenylglyoxylates with sulfur-containing carboxylates yielded the corresponding photodecarboxylative addition products in moderate to good yields of 26-58%. Reductive photodimerization competed with decarboxylative addition in all cases. The reaction protocol was successfully transferred to a microreactor. With potassium 2-(methylsulfanyl)propionate, photoadditions gave diastereomeric mixtures with low selectivity for the like-isomer.

    References and Notes

  • 1a Merzlikine AG. Voskresensky SV. Danilov EO. Neckers DC. Fedorov AV. Photochem. Photobiol. Sci.  2007,  6:  608 
  • 1b Merzlikine AG. Voskresensky SV. Danilov EO. Fedorov AV. Rodgers MAJ. Neckers DC. Photochem. Photobiol. Sci.  2004,  3:  892 
  • 1c Fedorov AV. Danilov EO. Merzlikine AG. Rodgers MAJ. Neckers DC. J. Phys. Chem. A  2003,  107:  3208 
  • 1d Merzlikine AG. Voskresensky SV. Danilov EO. Rodgers MAJ. Neckers DC. J. Am. Chem. Soc.  2002,  124:  14532 
  • 1e Fedorov AV. Danilov EO. Rodgers MAJ. Neckers DC. J. Am. Chem. Soc.  2001,  123:  5136 
  • 1f Hu S. Wu X. Neckers DC. Macromol.  2000,  33:  4030 
  • 1g Hu S. Neckers DC. J. Photochem. Photobiol. A: Chem.  1998,  118:  75 
  • 1h Hu S. Neckers DC. J. Mater. Chem.  1997,  7:  1737 
  • 1i Hu S. Neckers DC. J. Org. Chem.  1997,  62:  755 
  • 1j Hu S. Neckers DC. J. Org. Chem.  1996,  61:  6407 
  • 1k Encinas MV. Lissi EA. Zanocco A. Steward LC. Scaiano JC. Can. J. Chem.  1984,  62:  386 
  • 1l Pappas SP. Alexander JE. Zehr RD. J. Am. Chem. Soc.  1970,  92:  6927 
  • 1m Leermakers PA. Warren PC. Vesley GF. J. Am. Chem. Soc.  1964,  86:  1768 
  • 2a D’Auria M. Emanuele L. Racioppi R. Lett. Org. Chem.  2008,  5:  249 
  • 2b D’Auria M. Emanuele L. Racioppi R. Tetrahedron Lett.  2004,  45:  3877 
  • 2c D’Auria M. Emanuele L. Racioppi R. Photochem. Photobiol. Sci.  2003,  2:  904 
  • 2d Hu S. Neckers DC. J. Chem. Soc., Perkin Trans. 2  1999,  1771 
  • 2e Hu S. Neckers DC.
    J. Org. Chem.  1997,  62:  564 
  • 2f Buhr S. Griesbeck AG. Lex J. Tetrahedron Lett.  1996,  37:  1195 
  • 3a Hu S. Neckers DC. J. Photochem. Photobiol. A: Chem.  1998,  114:  103 
  • 3b Fujisawa T. Monroe BM. Hammond GS. J. Am. Chem. Soc.  1970,  92:  542 
  • 3c Huyser ES. Neckers DC. J. Org. Chem.  1964,  29:  276 
  • 4a Hu S. Neckers DC. J. Org. Chem.  1997,  62:  7827 
  • 4b Hu S. Neckers DC. J. Org. Chem.  1997,  62:  6820 
  • 4c Hu S. Neckers DC. Tetrahedron  1997,  53:  7165 
  • 4d Hu S. Neckers DC. Tetrahedron  1997,  53:  2751 
  • 5a Lavy T. Sheynin Y. Sparkes HA. Howard JAK. Kaftory M. Cryst. Eng. Comm.  2008,  10:  734 
  • 5b Griesbeck AG. Heckroth H. Synlett  2002,  131 
  • 5c Zehavi U. J. Org. Chem.  1977,  42:  2821 
  • 6a Gallagher S. Hatoum F. Zientek N. Oelgemöller M. Tetrahedron Lett.  2010,  51:  3639 
  • 6b Hatoum F. Gallagher S. Oelgemöller M. Tetrahedron Lett.  2009,  50:  6593 
  • 6c Hatoum F. Gallagher S. Baragwanath L. Lex J. Oelgemöller M. Tetrahedron Lett.  2009,  50:  6335 
  • 6d Kim AR. Lee K.-S. Lee C.-W. Yoo DJ. Hatoum F. Oelgemöller M. Tetrahedron Lett.  2005,  46:  3395 
  • 6e Oelgemöller M. Cygon P. Lex J. Griesbeck AG. Heterocycles  2003,  59:  669 
  • 6f Griesbeck AG. Oelgemöller M. Lex J. Synlett  2000,  1455 
  • 6g Griesbeck AG. Oelgemöller M. Synlett  2000,  71 
  • 6h Griesbeck AG. Gudipati MS. Hirt J. Lex J. Oelgemöller M. Schmickler H. Schouren F. J. Org. Chem.  2000,  65:  7151 
  • 6i Griesbeck AG. Oelgemöller M. Synlett  1999,  492 
  • 6j Belluau V. Noeureuil P. Ratzke E. Skvortsov A. Gallagher S. Motti CA. Oelgemöller M. Tetrahedron Lett.  2010,  51:  4738 
  • 7a Griesbeck AG. Maptue N. Bondock S. Oelgemöller M. Photochem. Photobiol. Sci.  2003,  2:  450 
  • 7b Griesbeck AG. Kramer W. Oelgemöller M. Green Chem.  1999,  1:  205 
  • 9a Coyle EE. Oelgemöller M. Photochem. Photobiol. Sci.  2008,  7:  1313 
  • 9b Coyle EE. Oelgemöller M. Chem. Technol.  2008,  5:  T95 
  • 9c Matsushita Y. Ichimura T. Ohba N. Kumada S. Sakeda K. Suzuki T. Tanibata H. Murata T. Pure Appl. Chem.  2007,  79:  1959 
  • 11a The assignment was based on the NMR data of the corresponding phthalimide analogues, see: (a) Griesbeck AG. Oelgemöller M. Lex J. Haeuseler A. Schmittel M. Eur. J. Org. Chem.  2001,  1831 
  • 11b (b) Peters K. Peters E.-M. Oelgemöller M. Cho J.-M. Griesbeck AG. Z. Krist. NCS  2000,  215:  37 
  • 12a Hoffmann N. J. Photochem. Photobiol. C: Photochem. Rev.  2008,  9:  43 
  • 12b Oelgemöller M. Bunte J.-O. Mattay J. In Synthetic Organic Photochemistry   Griesbeck AG. Mattay J. Marcel Dekker; New York: 2004.  Chap. 10. p.267-295  
  • 12c Mattay J. Angew. Chem., Int. Ed. Engl.  1987,  26:  825 
  • 13 Pienta NJ. In Photoinduced Electron Transfer   Fox MA. Chanon M. Elservier; Amsterdam: 1988.  p.421-486  
  • 14 Eberson L. In Electron Transfer Reactions in Organic Chemistry (Reactivity and Structure-Concepts in Organic Chemistry)   Vol. 25:  Hafner K. Springer; Berlin: 1987.  p.39-66  
  • 15a Görner H. Oelgemöller M. Griesbeck AG. J. Phys. Chem. A  2002,  106:  1458 
  • 15b Görner H. Griesbeck AG. Heinrich T. Kramer W. Oelgemöller M. Chem. Eur. J.  2001,  7:  1530 
  • 17 For phthalimides, see: Hatanaka Y. Sato Y. Nakai H. Wada M. Mizuguchi T. Kanaoka Y. Liebigs Ann. Chem.  1992,  1113 
8

General Procedure for Irradiation
The alkyl phenylglyoxylate (1.5 mmol) was dissolved in MeCN (50 mL). A solution of the potassium carboxylate (4.5 mmol) in H2O (50 mL) was added, and the mixture was irradiated (Rayonet Photochemical Reactor RPR-200; λ = 350 ± 30 nm) at 15-20 ˚C in a Pyrex tube (λ ³ 300 nm) while purging with a slow stream of nitrogen. The progress of the reaction was monitored by TLC analysis or by passing the departing gas stream through a sat. Ba(OH)2 solution until precipitation of BaCO3 had ceased. Most of the MeCN was evaporated, and the remaining solution was extracted with EtOAc (4 × 25 mL). The combined organic layers were washed with 5% NaHCO3 (1 × 25 mL) and brine (1 × 25 mL), dried over MgSO4, and evaporated. The products were purified by flash column chromatography (eluent: n-hexane-EtOAc = 5:1).
Selected Physical and Spectral Data for the Product Methyl-2-(1,3-dithian-2-yl)-2-hydroxy-2-phenylacetate (4e)
Yellowish solid, mp 104-106 ˚C. R f = 0.39 (SiO2, n-hexane-EtOAc = 5:1). ¹H NMR (400 MHz, acetone-d 6): δ = 1.84 (m, 2 H, CH2), 2.40-2.46 (m, 1 H, SCH2), 2.56-2.62 (m, 1 H, SCH2), 3.02-3.09 (m, 1 H, SCH2), 3.19-3.26 (m, 1 H, SCH2), 3.61 (s, 3 H, OCH3), 4.48 (s, 1 H, CH), 5.14 (s, 1 H, OH), 7.14-7.24 (br m, 3 H, Harom), 7.56 (dd, ³ J = 8.4 Hz, 4 J = 1.6 Hz, 2 H, Harom) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 25.1 (t, 1 C, CH2), 28.0 (t, 1 C, SCH2), 28.3 (t, 1 C, SCH2), 50.4 (d, 1 C, CH), 53.9 (q, 1 C, OCH3), 85.1 (s, 1 C, COH), 126.0 (d, 2 C, CHarom), 128.3 (d, 1 C, CHarom), 128.4 (d, 2 C, CHarom), 139.1 (s, 1 C, Cqarom), 173.8 (s, 1 C, C=O) ppm. IR (KBr): ν = 3490, 2953, 2925, 2892, 1725, 1239, 733, 692 cm. MS (EI, 70 eV): m/z (%) = 284 (<1) [M+], 119 (100) [M+ - H2O], 105 (12), 91 (4), 77 (14), 45 (5).

10

The dwell-reactor is made out of Foturan glass (λ ³ 300 nm) and has a total path length of 1.15 m (20 turns) on a 118 mm × 73 mm aperture. The reactor consisted of a(bottom) serpentine reaction channel 0.5 × 2 mm (D × W), with a second(top), heat-exchanging channel through which water is passed in order to control the reactor temperature. The degassed reaction mixture (20 mL)8 was pumped through the reaction channel via a syringe pump and collected in a test tube.

16

Irradiation of 2 in benzene and in the presence of 5 equiv of Me2S gave the corresponding addition product 5a in a yield of 35%. Selectivity (7 vs. 5a) was determined as 60:40. Similar results were obtained with 1,3-dithiolane.³a