Synlett 2010(10): 1528-1532  
DOI: 10.1055/s-0029-1219951
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 2-Aryl-3,4,5,6-tetrachloropyridines and 2,6-Diaryl-3,4,5-trichloropyridines by Site-Selective Suzuki-Miyaura Reactions of Pentachloropyridine

Peter Ehlersa,b, Sebastian Reimanna,b, Silke Erflea,b, Alexander Villingera, Peter Langer*a,b
a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
Fax: +49(381)4986412; e-Mail: peter.langer@uni-rostock.de;
b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
Further Information

Publication History

Received 5 March 2010
Publication Date:
25 May 2010 (online)

Abstract

The first Suzuki-Miyaura reactions of pentachloropyridine are reported. The reaction with two equivalents of arylboronic acids gave 2,6-diaryl-3,4,5-trichloropyridines, while the reaction with one equivalent of arylboronic acid afforded 2-aryl-3,4,5,6-tetrachloropyridines. The one-pot reaction of pentachloropyridine with two different arylboronic acids resulted in the formation of 2,6-diaryl-3,4,5-trichloropyridines containing two different aryl groups. All reactions proceeded with very good site selectivity.

    References and Notes

  • 1 Römpp Lexikon Naturstoffe   Steglich W. Fugmann B. Lang-Fugmann S. Thieme; Stuttgart: 1997. 
  • 2a Gilchrist TL. Heterocyclic Chemistry   Longman; Harlow: 1997. 
  • 2b Li JJ. Name Reactions in Heterocyclic Chemistry   John Wiley and Sons; Hoboken: 2005. 
  • 3 Hussain I. Yawer MA. Lalk M. Lindequist U. Villinger A. Fischer C. Langer P. Bioorg. Med. Chem.  2008,  16:  9898 
  • 4 Riahi A. Wurster M. Lalk M. Lindequist U. Langer P. Bioorg. Med. Chem.  2009,  17:  4323 
  • 5a Mello JV. Finney NS. J. Am. Chem. Soc.  2005,  127:  10124 
  • 5b Fang AG. Mello JV. Finney NS. Org. Lett.  2003,  5:  967 
  • 5c Schareina T. Kempe R. Angew. Chem. Int. Ed.  2002,  41:  1521 
  • 6a Scriven EFV. Pyridines and their Benzo Derivatives:(ii) Reactivity at Ring Atoms, In Comprehensive Heterocyclic Chemistry   Part 2A, Vol. 2:  Boulton AJ. McKillop A. Katritzky AR. Rees CW. Elsevier Science; Oxford: 1984.  Chapt. 2.05. p.165 
  • For recent pyridine syntheses, see:
  • 6b Dash J. Lechel T. Reissig H.-U. Org. Lett.  2007,  9:  5541 ; and references cited therein
  • 6c Andersson H. Almqvist F. Olsson R. Org. Lett.  2007,  9:  1335 ; and references cited therein
  • For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
  • 7a Schröter S. Stock C. Bach T. Tetrahedron  2005,  61:  2245 
  • 7b Schnürch M. Flasik R. Khan AF. Spina M. Mihovilovic MD. Stanetty P. Eur. J. Org. Chem.  2006,  3283 
  • For studies from our laboratory, see, for example:
  • 8a Dang TT. Dang TT. Ahmad R. Reinke H. Langer P. Tetrahedron Lett.  2008,  49:  1698 
  • 8b Dang TT. Villinger A. Langer P. Adv. Synth. Catal.  2008,  350:  2109 
  • 8c Hussain M. Nguyen TH. Langer P. Tetrahedron Lett.  2009,  50:  3929 
  • 8d Tengho Toguem S.-M. Hussain M. Malik I. Villinger A. Langer P. Tetrahedron Lett.  2009,  50:  4962 
  • 8e Dang TT. Dang TT. Rasool N. Villinger A. Langer P. Adv. Synth. Catal.  2009,  351:  1595 
  • 9a Madar DJ. Kopecka H. Pireh D. Pease J. Pliushchev M. Sciotti RJ. Wiedeman PE. Djuric SW. Tetrahedron Lett.  2001,  42:  3681 
  • 9b Lang F. Zewge D. Houpis IN. Volante RP. Tetrahedron Lett.  2001,  42:  3251 
  • 9c Arterburn JB. Rao KV. Ramdas R. Dible BR. Org. Lett.  2001,  3:  1351 
  • 9d Ji J. Li T. Bunnelle WH. Org. Lett.  2003,  5:  4611 
  • 9e Jiang W. Guan J. Macielag MJ. Zhang S. Qui Y. Kraft P. Bhattacharjee S. John TM. Haynes-Johnson D. Lundeen S. Sui Z. J. Med. Chem.  2005,  48:  2126 
  • 9f Zhang H. Cai Q. Ma D. J. Org. Chem.  2005,  70:  5164 
  • 10a Schwab PFH. Fleischer F. Michl J. J. Org. Chem.  2002,  67:  443 
  • 10b Haino T. Araki H. Yamanaka Y. Fukazawa Y. Tetrahedron Lett.  2001,  42:  3203 
  • 11a Sandee AJ. Williams CK. Evans NR. Davies JE. Boothby CE. Koehler A. Friend RH. Holmes AB. J. Am. Chem. Soc.  2004,  126:  7041 
  • 11b Vice S. Bara T. Bauer A. Evans CA. Ford J. Josien H. McCombie S. Miller M. Nazareno D. Palani A. Tagat J. J. Org. Chem.  2001,  66:  2487 
  • 11c Couve-Bonnaire S. Carpentier J.-F. Mortreux A. Castanet Y. Tetrahedron Lett.  2001,  42:  3689 
  • 11d Frampton MJ. Namdas EB. Lo S.-C. Burn PL. Samuel ICW. J. Mater. Chem.  2004,  14:  2881 
  • 11e Palucki M. Hughes DL. Yasuda N. Yang C. Reider PJ. Tetrahedron Lett.  2001,  42:  6811 
  • 11f Simoni D. Giannini G. Baraldi PG. Romagnoli R. Roberti M. Rondanin R. Baruchello R. Grisolia G. Rossi M. Mirizzi D. Invidiata FP. Grimaudo S. Tolomeo M. Tetrahedron Lett.  2003,  44:  3005 
  • 12a Fang YQ. Hanan GS. Synlett  2003,  852 
  • 12b Tilley JW. Zawaoiski S. J. Org. Chem.  1988,  53:  386 
  • 12c Simkovsky NM. Ermann M. Roberts SM. Parry DM. Baxter AD. J. Chem. Soc., Perkin Trans. 1  2002,  1847 
  • 13a Nakano Y. Ishizuka K. Muraoka K. Ohtani H. Takayama Y. Sato F. Org. Lett.  2004,  6:  2373 
  • 13b Gelman D. Tsvelikhovsky D. Molander GA. Blum J. J. Org. Chem.  2002,  67:  6287 
  • 13c Hartner FW. Hsiao Y. Eng KK. Rivera NR. Palucki M. Tan L. Yasuda N. Hughes DL. Weissman S. Zewge D. King T. Tschaen D. Volante RP. J. Org. Chem.  2004,  69:  8723 
  • 14a Bonnet V. Mongin F. Trecourt F. Queguiner G. Knochel P. Tetrahedron  2002,  58:  4429 
  • 14b Dumouchel S. Mongin F. Trecourt F. Queguiner G. Tetrahedron Lett.  2003,  44:  3877 
  • 15 Handy ST. Wilson T. Muth A. J. Org. Chem.  2007,  72:  8496 
  • 16a Gilmore CJ. MacNicol DD. Murphy A. Russel MA. Tetrahedron Lett.  1984,  25:  4303 
  • 16b Roberts SM. Suschitzky H. J. Chem. Soc. C  1968,  1537 
  • 16c Mack AG. Suschitzky H. Wakefield BJ. J. Chem. Soc., Perkin Trans. 1  1980,  1682 
  • 17a Suschitzky H. Wakefield BJ. Whitten JP. J. Chem. Soc., Perkin Trans. 1  1980,  2709 
  • 17b Schmidt A. Mordhorst T. Nieger M. Org. Biomol. Chem.  2005,  3:  3788 
  • 18 Julia L. Riera J. Teixido R. J. Chem. Soc., Perkin Trans. 1  1991,  1101 
  • 19a Binns H. Suschitzky H. J. Chem. Soc. C  1971,  1223 
  • 19b Roedig A. Grohe K. Klatt D. Kleppe H.-G. Chem. Ber.  1966,  2813 
  • 19c Bratt J. Iddon B. Mack AG. Suschitzky H. Taylor JA. Wakefield BJ. J. Chem. Soc., Perkin Trans. 1  1980,  648 
  • 20 Billingsley K. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  3358 ; and references cited therein
21

General Procedure for the Synthesis of 3a-f A solution of Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (1.8 equiv, 290 mg), and pentachloropyridine (0.5 mmol, 126 mg), dissolved in a 10:1 mixture of MeCN (2 mL) and H2O (0.2 mL) was stirred for 10 min. Subsequently, the boronic acid 2 (2.2 equiv) was added. The solution was stirred for 20 h at r.t. To the reaction mixture was added brine, and the organic and the aqueous layer were separated. The latter was extracted with CH2Cl2 (3×). The combined organic layers were dried (Na2SO4), filtered, and the solution was concentrated in vacuo. The residue was purified by column chromatography (hexane-CH2Cl2).

22

2,3,4,5-Tetrachloro-6-(4-methoxyphenyl)pyridine (3a)
Starting with 2a (1.1 mmol), Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (0.9 mmol, 290 mg), and 1 (0.5 mmol, 126 mg) in MeCN (2 mL) and H2O (0.2 mL), 3a was isolated by column chromatography (hexane-CH2Cl2 = 4:1) as a white solid (108 mg, 67%), mp 129-130 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.86 (s, 3 H, OCH3), 6.98 (d, ³ J = 9.0 Hz, 2 H, Ar), 7.70 (d, ³ J = 9.0 Hz, 2 H, Ar). ¹³C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 113.6 (CH), 128.1, 128.2, 128.8 (CAr/Hetar), 131.1 (CH), 143.0, 147.1, 154.6, 160.8 (CAr/Hetar). IR (ATR): 3015 (w), 2955 (w), 2923 (w), 2853 (w), 2728 (w), 2553 (w), 1607 (w), 1505 (s), 1350 (m), 1320 (br, s), 1288 (s), 1084 (s), 815 (s) cm. MS (EI, 70 eV): m/z (%) = 323 (100) [M+], 321 (78), 280 (19), 278 (15), 245 (13), 243 (13), 210 (6), 208 (9). HRMS (EI, 70 eV): m/z calcd for C12H7ONCl4: 320.92763; found: 320.927630. Anal. Calcd for C12H7Cl4NO (323.0): C, 44.62; H, 2.18; N, 4.34. Found: C, 44.84; H, 2.21; N, 4.33.

23

General Procedure for the Synthesis of 4a-f A solution of Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (2.4 equiv, 391 mg), and pentachloropyridine (0.5 mmol, 126 mg) in MeCN (2 mL) and H2O (0.2 mL) was stirred for 10 min at 20 ˚C. Subsequently, the boronic acid 2 (2.4 equiv) was added at 20 ˚C. The solution was stirred for 20 h at 90-100 ˚C. The workup was carried out as described for the synthesis of 3a-f.

24

3,4,5-Trichloro-2,6-diphenylpyridine (4c)
Starting with Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (1.2 mmol, 391 mg), 1 (0.5 mmol, 126 mg), and 2e (1.2 mmol, 146 mg) in MeCN (2 mL) and H2O (0.2 mL), 4e was isolated as a white solid (109 mg, 65%), mp 168-170 ˚C; reaction temperature 100 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.34-7.40 (m, 2 H, CH), 7.44-7.50 (m, 4 H, CH), 7.61-7.65 (m, 4 H, CH). ¹³C NMR (75 MHz, CDCl3): δ = 127.2, 127.3, 128.8 (CHAr), 129.7, 141.2, 144.7, 146.5 (CHetar). IR (ATR): 3058 (w), 2921 (m), 1731 (m), 1529 (s), 1486 (br, s), 1369 (s), 1329 (s), 1297 (s), 1200 (br, s), 1067 (m), 883 (m), 817 (s), 771 (s), 737 (s), 708 (s), 691 (s), 599 (s) cm. MS (EI, 70 eV): m/z (%) = 340 (68) [M]+, 294 (11), 302 (11), 299 (20), 298 (100), 263 (13), 227 (30), 160 (25), 149 (11). HRMS (EI, 70 eV): m/z calcd for C17H10Cl3N: 332.98733; found: 332.98738. Anal. Calcd for C17H10NCl3 (334.63): C, 61.02; H, 3.01; N, 4.19. Found: C, 61.35; H, 3.24; N, 3.89.

25

CCDC-771412 contain all crystallographic details of this publication which are available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk.

26

General Procedure for the Synthesis of 5a-c
To a solution of Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (2.4 equiv, 391 mg), and pentachloropyridine (0.5 mmol, 126 mg) in MeCN (2 mL) and H2O (0.2 mL) was added the first boronic acid (2.2 equiv). The solution was stirred for 2 h at 80 ˚C. After cooling to r.t., the second boronic acid (2.2 equiv) was added. The solution was stirred for 12 h at 80 ˚C. The workup was carried out as described for the synthesis of 3a-f.

27

1-{4-[3,4,5-Trichloro-6-( p -tolyl)pyrid-2-yl]phenyl}ethanone (5c) Starting with 2f (1.1 mmol, 180 mg), 2h (1.1 mmol, 150 mg), Pd(PPh3)4 (5 mol%, 29 mg), Cs2CO3 (1.2 mmol, 390 mg), and 1 (0.5 mmol, 126 mg) in MeCN (2 mL) and H2O (0.2 mL), 5c was isolated by column chromatography (heptanes-EtOAc = 10:1) as a colorless solid (93 mg, 48%), mp 190-192 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 2.35 (s, 3 H, CH3), 2.58 (s, 3 H, CH3), 7.21 (d, ³ J = 8.3 Hz, 2 H, Ar), 7.57 (d, ³ J = 8.2 Hz, 2 H, Ar), 7.77 (d, ³ J = 8.6 Hz, 2 H, Ar), 7.98 (d, ³ J = 8.6 Hz, 2 H, Ar). ¹³C NMR (75 MHz, CDCl3): δ = 21.5 (CH3), 26.8 (CH3), 128.0 (CAr/Hetar), 128.1 (CH), 128.3, 128.8, 128.9 (CAr/Hetar), 128.9, 129.4 (CH), 129.6 (CAr/Hetar), 129.9 (CH), 134.7, 137.3, 139.7, 142.2 (CAr/Hetar), 197.7 (C=O). IR (ATR): 3339 (w), 3076 (w), 3031 (w), 2997 (w), 2921 (m), 2853 (w), 1674 (w), 1607 (s), 1523 (m), 1493 (m), 1357 (s), 1267 (s), 1186 (m), 959 (m), 815 (s) cm. MS (EI, 70 eV): m/z (%) = 389 (51) [M+], 378 (33), 376 (100), 374 (98), 346 (20), 276 (10), 240 (9), 187 (9). HRMS (EI, 70 eV): m/z calcd for C20H14O1N1Cl3: 389.01355; found: 389.01319.