Synlett 2010(10): 1544-1548  
DOI: 10.1055/s-0029-1219925
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Solid-Phase Synthesis of (ω-Aminoalkyl)peptoids Using Azide Chemistry

Daniel Fritz, Stefan Bräse*
Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Fax: +49(721)6088581; e-Mail: braese@kit.edu;
Further Information

Publication History

Received 7 March 2010
Publication Date:
10 May 2010 (online)

Abstract

Functionalized (ω-aminoalkyl)peptoids - useful molecular transporters for drugs and probes into cells - have been synthesized by a combined microwave-assisted sub-monomer peptoid synthesis with 1-amino-ω-azidoalkanes and a subsequent reduction of the azide moiety on solid supports. This method enables the preparation of unprecedented chiral amino-functionalized and PEG-type peptoids. Both the scope and limitations of this process are presented herein.

    References and Notes

  • 1 Simon RJ. Kania RS. Zuckermann RN. Huebner VD. Jewell DA. Banville S. Ng S. Wang L. Rosenberg S. Marlowe CK. Proc. Natl. Acad. Sci. U.S.A.  1992,  89:  9367 
  • 2 Zuckermann R, Dubois-Stringfellow N, Dwarki V, Innis MA, Murphy JE, Cohen F, and Tetsuo U. inventors; PCT Int. Appl. WO  9806437.  (Chiron Corporation, USA)
  • 3a Peretto I. Sanchez-Martin RM. Wang X.-h. Ellard J. Mittoo S. Bradley M. Chem. Commun.  2003,  2312 
  • 3b Diaz-Mochon JJ. Fara MA. Sanchez-Martin RM. Bradley M. Tetrahedron Lett.  2008,  49:  923 
  • 3c Fara MA. Diaz-Mochon JJ. Bradley M. Tetrahedron Lett.  2006,  47:  1011 
  • 4a Schröder T. Niemeier N. Afonin S. Ulrich AS. Krug HF. Bräse S. J. Med. Chem.  2008,  51:  376 
  • 4b Schröder T. Schmitz K. Niemeier N. Balaban TS. Krug HF. Schepers U. Bräse S. Bioconjugate Chem.  2007,  18:  342 
  • 5 Tan NC. Yu P. Kwon Y.-U. Kodadek T. Bioorg. Med. Chem.  2008,  16:  5853 
  • 6 For a different approach, see: Hahn F. Schmitz K. Balaban TS. Bräse S. Schepers U. ChemMedChem  2008,  3:  1185 
  • 7 Zuckermann RN. Kerr JM. Kent SBH. Moos WH. J. Am. Chem. Soc.  1992,  114:  10646 
  • 9 For a review concerning azide chemistry, see: Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed.  2005,  44:  5188 ; Angew. Chem. 2005, 117, 5320
  • 10a Jang H. Fafarman A. Holub JM. Kirshenbaum K. Org. Lett.  2005,  7:  1951 
  • 10b Holub JM. Jang H. Kirshenbaum K. Org. Biomol. Chem.  2006,  4:  1497 
  • 10c Shin SBY. Yoo B. Todaro LJ. Kirshenbaum K. J. Am. Chem. Soc.  2007,  129:  3218 
  • 10d Holub JM. Jang H. Kirshenbaum K. Org. Lett.  2007,  9:  3275 
  • 10e Holub JM. Garabedian MJ. Kirshenbaum K. QSAR Comb. Sci.  2007,  26:  1175 
  • 10f Shah NH. Kirshenbaum K. Macromol. Rapid Commun.  2008,  29:  1134 
  • 11a Lim H.-S. Archer CT. Kim Y.-C. Hutchens T. Kodadek T. Chem. Commun.  2008,  1064 
  • 11b Disney MD. inventors; PCT Int. Appl. WO  20081034898. See also:
  • 12 Lee JW. Jun SI. Kim K. Tetrahedron Lett.  2001,  42:  2709 
  • 13 Analytical data for selected products: (S)-1-[3-(5-Azido-pentyl)phenyl]ethylamine (3b): ¹H NMR (400 MHz, CDCl3): δ = 1.41 (tt, J = 7.2, 7.2 Hz, 2 H, N3CH2CH2CH 2), 1.44 (d, J = 6.4 Hz, 3 H, CHCH 3), 1.62 (tt, J = 7.6, 7.2 Hz, 2 H, CH 2CH2-Ar), 1.63 (tt, J = 7.2, 7.2 Hz, 2 H, CH 2CH2N3), 2.60 (t, J = 7.6 Hz, 2 H, CH 2-Ar), 3.25 (t, J = 7.2 Hz, 2 H, N3CH 2), 4.12 (q, J = 6.4 Hz, 2 H, CHCH3), 4.52 (br s, 2 H, NH2), 7.08 (d, J = 7.2 Hz, 1 H, Ar6-H), 7.14 (s, 1 H, Ar2-H), 7.15 (d, J = 7.2 Hz, 1 H, Ar4-H), 7.24 (dd, J = 7.2, 7.2 Hz, 1 H, Ar5-H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 23.4 (CHCH3), 26.4 (N3CH2CH2 CH2), 28.7 (N3CH2 CH2), 30.9 (CH2CH2-Ar), 35.7 (CH2-Ar), 51.3 (N3 CH2), 51.4 (CH), 123.5 (C 6-Ar-H), 126.2 (C 4-Ar-H), 127.8 (C 2-Ar-H), 128.7 (C 5-Ar-H), 142.9 [C q-Ar(CH2)], 143.5 [C q-Ar(CH)] ppm. FTIR (film on KBr): 2936, 2860, 2097, 1678, 1542, 1490, 1452, 1385, 1256, 1203, 1136, 897, 835, 799, 721, 706, 558, 461 cm; MS (FAB, matrix: mNBA): m/z (%) = 233(100) [M + H]+, 205(6) [M - N2]+; HRMS: m/z calcd: 233.1766; found: 233.1769. (S)-1-[3-(5-Azidopent-1-enyl)phenyl]- ethylamine (3c): ¹H NMR (400 MHz, CDCl3): δ = 1.38 (d, J = 6.8 Hz, 3 H, NCHCH 3), 1.87 (tt, J = 6.8, 6.8 Hz, 2 H, CH2CH 2CH2), 2.44 (t, J = 6.8 Hz, 2 H, CH 2C≡C), 3.91 (t, J = 6.8 Hz, 2 H, N3CH 2), 4.04 (q, J = 6.8 Hz, 1 H, CHCH3), 5.62 (br s, 2 H, NH2), 7.18 (dd, J = 4.0, 3.6 Hz, 1 H, Ar5-H), 7.18 (d, J = 4.0 Hz, 1 H, Ar6-H), 7.20-7.28 (m, 1 H, Ar4-H), 7.31 (s, 1 H, Ar2-H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 16.7 (CH2C≡C), 21.9 (CHCH3), 27.8 (N3 CH2), 50.2 (CH2 CH2CH2), 51.2 (CH), 81.1 (C≡C-Ar), 88.8 (C≡C-Ar), 124.2 [C q-Ar(C≡C)], 125.8 (C 6-Ar-H), 128.9 (C 5-Ar-H), 129.5 (C 4-Ar-H), 131.4 (C 2-Ar-H), 141.3 [C q-Ar(CH)] ppm. FTIR (film on KBr): 2932 (m), 2099, 1678, 1602, 1483, 1430, 1367, 1293, 1256, 1202, 1134, 897, 834, 798, 721, 700, 476; MS (FAB, matrix: mNBA): m/z (%) = 229(50)[M + H]+, 212(100) [M - NH2]+; HRMS: m/z calcd: 229.1453; found: 229.1449. 2-[2-(2-Azidoethoxy)ethoxy]ethylamine (3d): Analytical data are consistent with those reported by: Klein E. DeBonis S. Thiede B. Skoufias DA. Kozielski F. Lebeau L. Bioorg. Med. Chem.  2007,  6474 
  • 14 The final products were isolated as ammonium trifluoroacetate salts
  • For a different approach, see:
  • 15a Natarajan A. Du W. Xiong C.-Y. DeNardo GL. DeNardo SJ. Gervay-Hague J. Chem. Commun.  2007,  695 
  • 15b Feau C. Klein E. Kerth P. Lebeau L. Bioorg. Med. Chem. Lett.  2007,  17:  1499 
  • 16a Olivos HJ. Alluri PG. Reddy MM. Salony D. Kodadek T. Org. Lett.  2002,  4:  4057 
  • 16b Gorske BC. Jewell SA. Guerard EJ. Blackwell HE. Org. Lett.  2005,  7:  1521 
  • 17a Bartra M. Urpí F. Vilarrasa J. Tetrahedron Lett.  1987,  28:  5941 
  • 17b For general scope and limitation of this reagent, see: Bartra M. Romea P. Urpí F. Vilarrasa J. Tetrahedron  1990,  46:  587 
  • 17c For its application on solid supports, see: Zimmermann V. Avemaria F. Bräse S. J. Comb. Chem.  2007,  9:  200 
  • 18 Kirshenbaum K. Barron AE. Goldsmith RA. Armand P. Bradley EK. Truong KTV. Dill KA. Cohen FE. Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A.  1998,  95:  4303 
  • 19 Barron AE. inventors; PCT Int. Appl. WO  2000043547. For the only report of PEG-type side chains in peptoids according to CAS, see:
  • Alkoxyethyl peptoids displaying PEG-like properties such as resistance to biofouling are known, for examples, see:
  • 20a Kim JM. Roy R. Carbohydr. Lett.  1996,  1:  465 
  • 20b Huang C.-Y. Uno T. Murphy JE. Lee S. Hamer JD. Escobedo JA. Cohen FE. Radhakrishnan R. Dwarki V. Zuckermann RN. Chem. Biol.  1998,  5:  345 
  • 20c Statz AR. Park JP. Chongsiriwatana NP. Barron AE. Messersmith PB. Biofouling  2008,  24:  439 
  • 20d Statz AR. Barron AE. Messersmith PB. Soft Matter  2008,  4:  131 
  • 20e Messersmith PB, Barron AE, Statz A, and Chongsiriwatana NP. inventors; PCT Int. Appl. WO  2010014940. 
  • 21 Adamczyk M. Grote J. Synth. Commun.  2001,  31:  2681 
8

CAUTION: Short chained 1-halo-ω-azidoalkanes might be explosive. We recommend the use of alkanes with at least six carbon atoms in case diazidoalkanes are formed. For a discussion, see ref. 9