Synlett 2010(10): 1481-1484  
DOI: 10.1055/s-0029-1219918
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Desulfonylation of Indoles and 7-Azaindoles Using Sodium tert-Butoxide

Charlotte Chauleta, Cécile Croixa, Joan Bassetb, Maria-Dolores Pujolb, Marie-Claude Viaud-Massuard*a
a UMR-CNRS 6239, Génétique-Immunothérapie-Chimie & Cancer, Equipe 5, Laboratoire de Chimie Organique et Thérapeutique, Université des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France
Fax: +33(2)47367229; e-Mail: marie-claude.viaud-massuard@univ-tours.fr;
b Laboratorio de Quimica Farmaceutica, Facultad de Farmacia, Universidad de Barcelona, Av. Diagonal, s/n, 08028 Barcelona, Spain
Further Information

Publication History

Received 30 November 2009
Publication Date:
06 May 2010 (online)

Abstract

A mild method for the desulfonylation of N-indoles and N-azaindoles is described. Deprotection is carried out under basic conditions, using sodium tert-butoxide in dioxane. Several functionalized indoles and 7-azaindoles were efficiently deprotected by this method, which is mild enough to be used to deprotect compounds including functions that are known to be sensitive to acidic or basic conditions.

    References and Notes

  • 1 La Regina G. Silvestri R. Gatti V. Lavecchia A. Novellino E. Befani O. Turini P. Agostinelli E. Bioorg. Med. Chem.  2008,  16:  2729 
  • 2 Peifer C. Selig R. Kinkel K. Ott D. Totzke F. Schächtele C. Heidenreich R. Röcken M. Schollmeyer D. Laufer S. J. Med. Chem.  2008,  51:  3814 
  • 3 Aoki K. Obata T. Yamazaki Y. Mori Y. Hirokawa H. Koseki J. Hattori T. Niitsu K. Takeda S. Abureda M. Miyamoto K. Chem. Pharm. Bull.  2007,  55:  255 
  • 4 Elkdah H. Li D. McFarlane G. Bernotas RC. Robichaud AJ. Magolda RL. Zhang GM. Smith D. Schechter LE. Bioorg. Med. Chem.  2007,  15:  6208 
  • 5 Kempson J. Guo J. Das J. Moquin RV. Spergel SH. Watterson SH. Langevine CM. Dyckman AJ. Pattoli M. Burke JR. Yang X. Gillooly KM. McIntyre KW. Chen L. Dodd JH. McKinnon M. Barrish JC. Pitts WJ. Bioorg. Med. Chem. Lett.  2009,  19:  2646 
  • 6 Berkessel A. Schröder M. Sklorz CA. Tabanella S. Vogl N. Lex J. Neudörfl JM. J. Org. Chem.  2004,  69:  3050 
  • 7 Paul BJ. Hobbs E. Buccino P. Hudlicky T. Tetrahedron Lett.  2001,  42:  6433 
  • 8 Burtoloso ACB. Correia CRD. Tetrahedron  2008,  64:  9928 
  • 9 Quaal KS. Ji S. Kim YM. Closson WD. Zubieta JA. J. Org. Chem.  1978,  43:  1311 
  • 10 Forshee PB. Sibert JW. Synthesis  2006,  756 
  • 11 Wnuk SF. Bergolla LA. Garcia PI. J. Org. Chem.  2002,  67:  3065 
  • 12 Knowles HS. Parsons AF. Pettifer RM. Rickling S. Tetrahedron  2000,  56:  979 
  • 13 Vellemäe E. Lebedev O. Mäeorg U. Tetrahedron Lett.  2008,  49:  1373 
  • 14 Blay G. Cardona L. Climent E. Pedro JR. Angew. Chem. Int. Ed.  2008,  47:  5593 
  • 15 Nenadjenko VG. Karpov AS. Balenkova ES. Tetrahedron: Asymmetry  2001,  12:  2517 
  • 16 Alonso DA. Andersson PG. J. Org. Chem.  1998,  63:  9455 
  • 17 Nandi P. Redko MY. Petersen K. Dye JL. Lefenfeld M. Vogt PF. Jackson JE. Org. Lett.  2008,  10:  5441 
  • 18 Nolan C. Gunnlaugsson T. Tetrahedron Lett.  2008,  49:  1993 
  • 19 Kudav DP. Samant SP. Hosangandi BD. Synth. Commun.  1987,  17:  1185 
  • 20 Weisblat DI. Magerlein BJ. Myers DR. J. Am. Chem. Soc.  1953,  75:  3630 ; and references cited therein
  • 21 Silveira CC. Bernardi CR. Braga AL. Kaufman TS. Tetrahedron Lett.  2001,  42:  8947 
  • 22 Jolicoeur B. Chapman EE. Thompson A. Lubell WD. Tetrahedron  2006,  62:  11531 
  • 23 Liu Y. Shen L. Prashad M. Tibbatts J. Repič O. Blacklock TJ. Org. Process Res. Dev.  2008,  12:  778 
  • 24 Kumari N. Reddy BG. Vankar YD. Eur. J. Org. Chem.  2009,  160 
  • 25 Fukuyama T. Jow C.-K. Cheung M. Tetrahedron Lett.  1995,  36:  6373 
  • 26 Bajwa JS. Chen G.-P. Prasad K. Repič O. Blacklock TJ. Tetrahedron Lett.  2006,  47:  6425 
  • 27 Itoh T. Yokoya M. Miyaushi K. Nagata K. Ohsawa A. Org. Lett.  2003,  5:  4301 
  • 28 Witulski B. Alayrac C. Angew. Chem. Int. Ed.  2002,  41:  3281 
  • 29 Yasuhara A. Sakamoto T. Tetrahedron  1998,  39:  595 
  • 30 Mendiola J. Baeza A. Alvarez-Builla J. Vaquero JJ. J. Org. Chem.  2004,  15:  4974 
  • 31 Mahboobi S. Pongratz H. Hufsky H. HockemeyerJ . Frieser M. Lyssenko A. Paper DA. Bürgermeister J. Böhmer F.-D. Fiebig H.-H. Burger AM. Baasner S. Beckers T. J. Med. Chem.  2001,  26:  4535 
  • 34 Romero M. Pujol MD. Synlett  2003,  173 
32

General Procedure
An oven-dried screw-cap test tube was charged, under an atmosphere of argon, with starting compound (1 equiv) and NaOt-Bu (1.5 equiv) and fitted with a septum. The tube was evacuated and backfilled with argon. The evacuation/backfill was repeated two additional times. Under an argon purge, dioxane (7.5 mL for 1 mmol) was added by syringe to rinse the side of the tube. The septum was replaced with a Teflon screw cap, the tube was sealed, and the mixture was stirred at 80 ˚C for the time indicated in Table 1 (checked by TLC). After cooling, the mixture was quenched with H2O (3 mL) and was extracted with EtOAc (2 × 10 mL). The organic phase was dried, and the solvent was removed in vacuo. The crude product obtained was purified by column chromatography (cyclohexane-EtOAc). The yields of the pure compounds are indicated in Table 1.

33

1 H -pyrrolo[2,3- b ]pyridine-2-carboxylic acid (2) ¹H NMR (200 MHz, DMSO): δ = 7.17-7.09 (m, 2 H, H-5, H-3), 8.09 (dd, J = 8.0, 1.6 Hz, 1 H, H-4), 8.39 (dd, J = 3.4 Hz, 1 H, H-6), 12.37 (s, 1 H, NH), 13.14 (s, 1 H, CO2H) ppm.
1-Methyl-3-oxo-1 H -furo[3,4- b ]indole (18)
¹H NMR (200 MHz, CDCl3): δ = 1.71 (d, J = 6.6 Hz, 3 H, CH3), 5.85 (q, J = 6.6 Hz, 1 H, CH), 7.28 (m, 2 H, H-5, H-6), 7.54 (d, J = 8.0 Hz, 1 H, H-8), 8.05 (d, J = 8.0 Hz, 1 H, H-5), 9.42 (br s, 1 H, NH) ppm.
2-( N , N -Dimethylhydrazinecarbonyl) indole (26) ¹H NMR (200 MHz, CDCl3): δ = 2.75 (s, 6 H, CH3), 6.85 (br s, 1 H, NH), 7.14 (t, J = 7.8 Hz, 1 H, H-6), 7.30 (t, J = 8.0 Hz, 1 H, H-5), 7.41 (d, J = 8.2 Hz, 1 H, H-4), 7.67 (d, J = 8.2 Hz, 1H, H-7), 9.20 (br s, 1 H, NH) ppm.