Synlett 2010(9): 1333-1336  
DOI: 10.1055/s-0029-1219905
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Thiosulfonate-Bridged Bromofluorene Endcapping Reagents

Vasco D. B. Bonifácio*a,b, Jorge Morgadoc,d, Ullrich Scherfb
a REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Fax: +351(21)2948550; e-Mail: vasco.bonifacio@dq.fct.unl.pt;
b Macromolecular Chemistry Group and Institute for Polymer Technology, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
c Instituto Superior Técnico, Departamento de Engenharia Química e Biológica, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
d Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Further Information

Publication History

Received 9 March 2010
Publication Date:
22 April 2010 (online)

Abstract

A simple and versatile synthesis of thiosulfonate-bridged bromofluorene end-capping reagents is reported. The novel fluorene-based π-electron-poor aromatic building block was used as end-capping reagent in the synthesis of a polyfluorene-based molecular wire.

    References and Notes

  • For an interesting perspective on molecular electronics, see:
  • 1a Miller JS. Adv. Mater.  1990,  2:  378 
  • 1b Miller JS. Adv. Mater.  1990,  2:  495 
  • 1c Miller JS. Adv. Mater.  1990,  2:  603 
  • 2 Ofir Y. Samanta B. Rotello VM. Chem. Soc. Rev.  2008,  37:  1814 
  • 3a Tour JM. Jones L. Pearson V. Lamba JJS. Burgin TP. Whitesides GM. Allara DL. Parikh AN. Atre SV. J. Am. Chem. Soc.  1995,  117:  9529 
  • 3b Stuhr-Hansen N. Christensen JB. Harrit N. Bjørnholm T. J. Org. Chem.  2003,  68:  1275 
  • 4a Römbke P. Schier A. Wiesbrock F. Schmidbaur H. Inorg. Chim. Acta  2003,  347:  123 
  • 4b Römbke P. Schier A. Schmidbaur H. J. Chem. Soc., Dalton Trans.  2001,  2482 
  • 5 Burdinski D. Blees MH. Chem. Mat.  2007,  19:  3933 
  • 6 Stachel H.-D. Eckl E. Immerz-Winkler E. Kreiner C. Weigand W. Robl C. Wünsch R. Dick S. Drescher N. Helv. Chim. Acta  2002,  85:  4453 
  • 7a Aucott SM. Milton HL. Robertson SD. Slawin AMZ. Walker GD. Woollins JD. Chem. Eur. J.  2004,  10:  1666 
  • 7b Aucott SM. Kilian P. Robertson SD. Slawin AMZ. Woollins JD. Chem. Eur. J.  2006,  12:  895 
  • 8 Aucott SM. Kilian P. Milton HL. Robertson SD. Slawin AMZ. Woollins JD. Inorg. Chem.  2005,  44:  2710 
  • 9 Bo Z, and Yaquin F. inventors; CN  1629113. 
  • 10 Ashe AJ. Kampf JW. Savla PM. Heteroat. Chem.  1994,  5:  113 
  • 11 Nakano K. Hidehira Y. Takahashi K. Hiyama T. Nozaki K. Angew. Chem. Int. Ed.  2005,  44:  7136 
  • 12 Grainger RS. Patel B. Kariuki BM. Angew. Chem. Int. Ed.  2009,  48:  4832 
  • 13 Oxelbark J. Thunberg L. Anderson A. Allenmark S. Acta Chem. Scand.  1999,  53:  710 
  • 14a Armarego WLF. Turner EE. J. Chem. Soc.  1956,  1665 
  • 14b Stender K.-W. Klar G. Knittel D. Z. Naturforsch., B  1985,  40:  774 
  • 15 A similar but less constrained ring system has been reported. Thieno[2,3,4,5-lmn][9,10]dithiaphenantherene-9,9-dioxide was obtained in low yield using MCPBA. See: Kimura T. Ishikawa Y. Ogawa S. Nishio T. Iida I. Furukawa N. Tetrahedron Lett.  1992,  33:  6355 
  • 16 Wang L. Jing H. Bu X. Chang T. Jin L. Liang Y. Catal. Commun.  2007,  8:  80 
  • For examples of cyclic aromatic disulfides and their properties, see:
  • 18a Goodings EP. Mitchard DA. Owen G. J. Chem. Soc., Perkin Trans. 1  1972,  1310 
  • 18b Chiang L.-Y. Meinwald J. Tetrahedron Lett.  1980,  21:  4565 
  • 18c Miller EW. Bian SX. Chang CJ. J. Am. Chem. Soc.  2007,  129:  3458 
  • 19a Cossu S. Delogu G. Lucchi O. Fabbri D. Fois MP. Synth. Commun.  1989,  19:  3431 
  • 19b Zhu-Ohlbach Q. Gleiter R. Rominger F. Schmidt H.-L. Reda T. Eur. J. Org. Chem.  1998,  2409 
  • 20 Scherf U. List EJW. Adv. Mater.  2002,  14:  477 
  • 21 Søndergaard R. Strobel S. Bundgaard E. Norrman K. Hansen AG. Albert E. Csaba G. Lugli P. Tornow M. Krebs FC. J. Mater. Chem.  2009,  19:  3899 
  • 22 Methanethiosulfonate has been shown to influence the Ca²+ release in the sarcoplasmic reticulum by selective activation of ryanodine receptors (RyRs), a key Ca²+ regulatory channel, see: Pessah IN. Pest. Manag. Sci.  2001,  57:  941 
17

Complete reduction was monitored by TLC.

23

6,6-Di- n -octyl-6 H -fluorene[4,5- cde ][1,2]dithiine (3)
9,9-Di-n-octalyfluorene (2, 29.5 g, 0.0756 mol) was stirred with n-BuLi (1.6 M in hexane, 192 mL, 0.302 mol) and TMEDA (48 mL, 0.302 mol) at 60 ˚C for 3 h. The resulting dark red solution was cooled down to -78 ˚C and diluted with THF (250 mL). Sulfur (24.0 g, 0.755 mol) was added, and the resulting orange mixture allowed to reach r.t. and stirred for additional 12 h. This mixture was then washed with a 1 M aq NaOH solution (this washing completely removes intensively smelling byproducts) and H2O. The organic layer was separated and the aqueous layer further extracted with Et2O. The organic layers were combined, dried with anhyd MgSO4, filtered, and the solvent removed in vacuo. Purification of the resulting dark red oil by column chromatography(hexane) gave a yellow oil that solidified upon standing (20.7 g, 60% yield); mp 43-45 ˚C(hexane). IR (thin film): 2924, 2852, 1464, 1409, 786, 735 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.21 (2 H, t, J = 7.6 Hz), 7.11 (2 H, d, J = 8.0 Hz), 7.05 (2 H, d, J = 7.6 Hz), 1.93-1.89 (4 H, m), 1.27-1.08 (20 H, m), 0.84 (6 H, t, J = 7.0 Hz), 0.73 (4 H, m). ¹³C NMR (100.6 MHz, CDCl3): δ = 150.79, 137.41, 129.30, 125.47, 124.08, 122.00, 56.65, 39.21, 31.76, 29.95, 29.17, 24.01, 22.58, 14.03. Anal. Calcd for (C29H40S2): C, 76.93; H, 8.90; S, 14.16. Found: C, 75.76; H, 9.52; S, 13.60.
Thiosulfonate-Bridged Fluorene (4)
A CH2Cl2 solution (100 mL) of 3 (2.32 g, 5.94 mmol), NBS (2.11 g, 11.87 mmol), and silica gel (24 g, 2.0 g mmol NBS) were stirred at r.t. for 13 h. The orange mixture obtained was filtered, extracted with CH2Cl2 and the organic phase washed with H2O. The organic layers were combined, dried with anhyd MgSO4, filtered, and the solvent removed under vacuo. After purification by column chromatography (hexane) a light yellow oil was obtained (1.9 g, 66% yield). IR (thin film): 2920, 2848, 1392, 1323, 1155, 1136, 1119 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.81 (1 H, d, J = 8.0 Hz), 7.63 (1 H, d, J = 8.0 Hz), 7.58 (1 H, t, J = 8.0 Hz), 7.44 (1 H, d, J = 8.0 Hz), 7.36 (1 H, d, J = 8.0 Hz), 7.26 (1 H, d, J = 8.0 Hz), 2.05-2.01 (4 H, m), 1.22-1.07 (20 H, m), 0.82 (6 H, t, J = 8.0 Hz), 0.70 (4 H, m). ¹³C NMR (100.6 MHz, CDCl3): δ = 152.08, 151.54, 137.15, 135.19, 132.35, 129.54, 128.83, 125.95, 124.77, 122.13, 117.61, 56.63, 39.20, 31.75, 29.94, 29.16, 24.01, 22.57, 14.03. Anal. Calcd for (C29H40S2O2): C, 71.85; H, 8.32; S, 13.23. Found: C, 71.74; H, 8.41; S, 13.24.
Thiosulfonate-Bridged Monobromofluorene (5)
Compound 4 (1.0 g, 2.06 mmol), Br2 (0.22 mL, 9.75 mmol) and concd H2SO4 (15 mL) were stirred at r.t. overnight. The red mixture obtained was quenched with H2, and extracted with CH2Cl2. The organic layers were combined, dried with anhyd MgSO4, filtered, and the solvent removed under vacuo. After recrystallization from hexane white crystals were obtained (1.0 g, 86% yield); mp 75-76 ˚C(hexane). IR (thin film): 2921, 2849, 1393, 1323, 1157, 1138, 1120 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.84 (1 H, dd, J = 8.0, 4.0 Hz), 7.64-7.62 (3 H, m), 7.25 (1 H, d, J = 8.0 Hz), 2.04-2.00 (4 H, m), 1.22-1.07 (20 H, m), 0.83 (6 H, t, J = 8.0 Hz), 0.69 (4 H, m). ¹³C NMR (100.6 MHz, CDCl3): δ = 152.47, 150.74, 136.72, 134.91, 134.15, 132.91, 129.71, 128.21, 127.29, 123.23, 118.35, 118.01, 57.71, 39.12, 31.67, 29.76, 29.08, 23.95, 22.52, 13.99. Anal. Calcd for (C29H39BrO2S2): C, 61.80; H, 6.97; S, 11.38. Found: C, 61.49; H, 7.68; S, 11.05.
Thiosulfonate-Endcapped Oligofluorene (TS-OF)
A Schlenk flask was charged with 2,7-dibromo-9,9-
di-n-octylfluorene (500 mg, 0.91 mmol), Ni(cod)2 (599 mg, 2.18 mmol), and 2,2′-bipyridyl (340.4 mg, 2.18 mmol) under argon. 1,5-Cyclooctadiene (COD, 170 µL, 1.365 mmol) and THF (25 mL) were subsequently added and the mixture heated up to 60 ˚C for 3 h. After this period the thiosulfonate endcapping reagent 5 (154 mg, 0.273 mmol) was added and the mixture heated for additional 3 h. The solution was poured into aq 2 N HCl and extracted with CHCl3. The organic layer was washed with a sat. EDTA solution, dried over anhyd MgSO, and the solvent evaporated to dryness. The residue obtained was Soxhlet-extracted with MeOH (1 d) and EtOAc (3 d), redissolved in CHCl3 and reprecipitated into cold MeOH (1:100) to yield the endcapped oligo-fluorene TS-OF (245 mg, 70% yield). The copolymer showed thermal stability up to 350 ˚C by to thermo-gravimetric analysis (TGA). GPC (THF): Mn = 4300, Mw = 9190, PD = 2.13 (after extraction). UV/Vis (CHCl3): λmax,abs = 360 nm, photoluminescence: λmax,PL = 415 nm. IR (thin film): 2923, 2852, 1506, 1455, 1248, 1177, 1048, 812 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.83 (br s, ArH), 7.67 (br s, ArH), 7.38 (br s, ArH), 2.04 (4 H, br s), 1.13 (20 H, br s), 0.81 (6 H, br s). Anal. Calcd for (C319H438O4S4; 4465, n = 9): C, 85.81; H, 9.89; S, 2.87. Found: C, 84.04; H, 10.33; S, 2.64.