Synlett 2010(13): 1990-1996  
DOI: 10.1055/s-0029-1219816
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Immobilization of Pd on Nanosilica Dendrimer as SILC: Highly Active and Sustainable Cluster Catalyst for Suzuki-Miyaura Reaction

Hisahiro Hagiwara*a, Hirokazu Sasakia, Norio Tsubokawab, Takashi Hoshib, Toshio Suzukib, Tetsuya Tsudac, Susumu Kuwabatac
a Graduate School of Science and Technology, Niigata University, 8050, 2-Nocho, Ikarashi, Niigata 950-2181, Japan
Fax: +81(25)2627368; e-Mail: hagiwara@gs.niigata-u.ac.jp;
b Faculty of Engineering, Niigata University, 8050, 2-Nocho, Ikarashi, Niigata 950-2181, Japan
c Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
Further Information

Publication History

Received 26 January 2010
Publication Date:
16 April 2010 (online)

Abstract

Palladium acetate was noncovalently immobilized as a supported ionic liquid catalyst (SILC) in a nanosilica dendrimer, PAMDMAM, with the aid of an ionic liquid to form a cluster catalyst of palladium nanoparticles. The pseudo-homogeneous hetero­genized catalyst, Pd-nanoPAMDMAM-SILC, was effective for Suzuki-Miyaura reactions of ortho-substituted aryl bromides or aryl triflates without a ligand in 50% aqueous ethanol in air at room temperature. The catalyst could be re-used up to five times in 93% average yield after simple centrifugation. TON reached 176,000.

    References and Notes

  • 1a Wight PA. Davis ME. Chem. Rev.  2002,  102:  3589 
  • 1b Minakata S. Komatsu M. Chem. Rev.  2009,  109:  711 
  • 2a Tsubokawa N. Ichioka H. Saitoh T. Fujiki K. React. Funct. Polym.  1998,  37:  75 
  • 2b Murota M. Sato S. Tsubokawa N. Polym. Adv. Technol.  2002,  13:  144 
  • 2c Wu XZ. Liu P. Pu QS. Sun QY. Su ZX. Talanta  2004,  62:  918 
  • Recent representative advances on SILC:
  • 3a Mehnert CP. Mozeleski EJ. Cook RA. Chem. Commun.  2002,  3010 
  • 3b Riisager A. Wasserscheid P. van Hal R. Fehrmann R. J. Catal.  2003,  219:  452 
  • 3c Huang J. Jiang T. Gao H. Han B. Liu Z. Wu W. Chang Y. Zhao G. Angew. Chem. Int. Ed.  2004,  43:  1397 
  • 3d Breitenlechner S. Fleck M. Müller TE. Suppan A. J. Mol. Catal. A: Chem.  2004,  214:  175 
  • 3e Riisager A. Fehrmann R. Flicker S. van Hal R. Hanmann M. Wasserscheid P. Angew. Chem. Int. Ed.  2005,  44:  815 
  • 3f Mehnert CP. Chem. Eur. J.  2005,  11:  50 
  • 3g Lou L.-L. Yu K. Ding F. Thou W. Peng X. Liu S. Tetrahedron Lett.  2006,  47:  6513 
  • 3h Gua Y. Lia G. Adv. Synth. Catal.  2009,  351:  817 
  • 4a Hagiwara H. Sugawara Y. Isobe K. Hoshi T. Suzuki T. Org. Lett.  2004,  6:  2325 
  • 4b Hagiwara H. Sugawara Y. Hoshi T. Suzuki T. Chem. Commun.  2005,  2942 
  • 5 Hagiwara H. Ko KH. Hoshi T. Suzuki T. Chem. Commun.  2007,  2838 
  • 6a Hagiwara H. Okunaka N. Hoshi T. Suzuki T. Synlett  2008,  1813 
  • 6b Hagiwara H. Okunaka N. Hoshi T. Suzuki T. Synlett  2008,  1813 
  • 6c Hagiwara H. Nakamura T. Okunaka N. Hoshi T. Suzuki T. Helv. Chim. Acta  2010,  93:  175 
  • 7 Hagiwara H. Sasaki H. Hoshi T. Suzuki T. Synlett  2009,  643 
  • For representative examples of dendrimer-encapsulated metal nanoparticle catalysts, see:
  • 9a Crooks RM. Zhao M. Sun L. Chechik V. Yeung LK. Acc. Chem. Res.  2001,  34:  181 
  • 9b Mizugaki T. Murata M. Ooe M. Ebitani K. Kaneda K. Chem. Commun.  2002,  52 
  • 9c Ooe M. Murata M. Mizugaki T. Ebitani K. Kaneda K. Nano Lett.  2002,  2:  999 
  • 9d Ooe M. Murata M. Takahama A. Mizugaki T. Ebitani K. Kaneda K. Chem. Lett.  2003,  32:  692 
  • 9e Scott RW. Datye A. Crooks RM. J. Am. Chem. Soc.  2003,  125:  3708 
  • 9f Ooe M. Murata M. Mizugaki T. Ebitani K. Kaneda K. J. Am. Chem. Soc.  2004,  126:  1604 
  • 9g Scott RWJ. Wilson OM. Crooks RM.
    J. Phys. Chem. B  2005,  109:  692 
  • 9h Astruc D. Lu F. Aranzaes JR. Angew. Chem. Int. Ed.  2005,  44:  7852 
  • 9i Astruc D. Inorg. Chem.  2007,  46:  1884 
  • For recent reviews on Suzuki-Miyaura reaction, see:
  • 10a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 10b Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • 10c Miyaura N. Top. Curr. Chem.  2002,  219:  11 
  • 10d Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 10e Kotha S. Lahiri K. Kashinath D. Tetrahedron  2002,  58:  9633 
  • 10f Bellina F. Carpita A. Rossi R. Synthesis  2004,  2419 
  • 10g Alonso F. Beletskaya IP. Yus M. Tetrahedron  2008,  64:  3047 
  • 10h Martin R. Buchwald SL. Acc. Chem. Res.  2008,  41:  1461 
  • 11 Rouhi AM. Chem. Eng. News  2004,  82:  49 
  • 12 Hoshi T. Saitoh I. Nakazawa T. Suzuki T. Sakai J.-I. Hagiwara H. J. Org. Chem.  2009,  74:  4013 ; and earlier references cited therein
  • Some selected Suzuki-Miyaura reactions in an aqueous alcohol:
  • 13a Marck G. Villiger A. Buchecker R. Tetrahedron Lett.  1994,  35:  3277 
  • 13b Liu L. Zhang Y. Xin BJ. J. Org. Chem.  2006,  71:  3994 
  • 13c Zhang G. Synthesis  2005,  537 
  • 13d Arvela RK. Leadbeater NE. Collins MJ. Tetrahedron  2005,  61:  9349 
  • 13e Chanthavong F. Leadbeater NE. Tetrahedron Lett.  2006,  47:  1909 
  • 13f Hagiwara H. Ko KH. Hoshi T. Suzuki T. Synlett  2008,  618 
  • Immobilization of palladium on amorphous silica dendrimer was pioneered by Alper and co-workers by coordination on phosphonated-dendrimer silica surface:
  • 14a Reynhardt JPK. Alper H. J. Org. Chem.  2003,  68:  8353 
  • 14b Antebi S. Arya P. Manzer LE. Alper H. J. Org. Chem.  2002,  67:  6623 
  • 14c Chanthateyanonth R. Alper H. Adv. Synth. Catal.  2004,  346:  1375 
  • 14d Touzani R. Alper H. J. Mol. Catal. A: Chem.  2005,  227:  197 
  • 14e Lu S.-M. Alper H. J. Am. Chem. Soc.  2005,  127:  14776 
  • 14f Zweni PP. Alper H. Adv. Synth. Catal.  2006,  348:  725 
  • 14g Zweni PP. Alper H. Adv. Synth. Catal.  2004,  346:  849 
  • 14h Alper H. Arya P. Bourque SC. Jefferson GR. Manzer LE. Can. J. Chem.  2000,  78:  920 
  • 14i Chanthateyanonth R. Alper H.
    J. Mol. Catal. A: Chem.  2003,  201:  23 
  • 14j Reynhardt JPK. Yang Y. Sayari A. Alper H. Adv. Funct. Mater.  2005,  15:  1641 
  • For recent representative examples of ligandless Suzuki-Miyaura reaction catalyzed by heterogeneous catalyst on solid support, see:
  • 15a Kudo D. Masui Y. Onaka M. Chem. Lett.  2007,  36:  918 
  • 15b Kazmaier U. Hähn S. Weiss TD. Kautenburger R. Maier WF. Synlett  2007,  2579 
  • 15c Artok L. Bulut H. Tetrahedron Lett.  2004,  45:  3881 
  • 15d Daku KML. Newton RF. Pearce SP. Vileb J. William JMJ. Tetrahedron Lett.  2003,  44:  5095 
8

Hagiwara, H.; Kuroda, T.; Hoshi, T.; Suzuki, T. unpublished results.

16

Preparation of Pd-nanoPAMDMAM-SILC 5
NanoPAMDMAM 3 (200 mg) powder was added to a solution of [bmim]PF6 (19 mg, 10 wt%) and Pd(OAc)2
(36 mg, 0.16 mmol) in THF (2 mL) in open air. The homogeneous solution was stirred at r.t. for 4 h, and evaporated to dryness under reduced pressure. The resulting powder was rinsed with Et2O (2 mL) five times. Each time, the ether solution was stirred for 10 min, centrifuged for 10 min, and decanted to leave the powder. Evaporation of ether provided Pd-nanoPAMDMAM-SILC 5 as a pale yellow powder (247 mg, 0.5-0.6 mmol/g of Pd).

17

4-Phenylacetophenone (8a)
Potassium carbonate (138 mg, 1.0 mmol) and Pd-nanoPAMDMAM-SILC 5 (8 mg, 0.005 mmol) were added to a solution of 4-bromoacetophenone (6a, 100 mg, 0.50 mmol) and phenylboronic acid (7a, 85 mg, 0.70 mmol) in 50% aq EtOH (2 mL) in open air. The solution was stirred at r.t. for 30 min, then centrifuged for 10 min. After decantation of the organic layer, the powder was rinsed with Et2O-EtOH (1:1, 5 mL) five times. Each time, the resulting homogeneous solution was centrifuged to precipitate the SILC. The combined organic layer was evaporated to dryness under reduced pressure. Purification by column chromatography (EtOAc-n-hexane = 1:10) provided
4-phenylacetophenone (8a, 102 mg) quantitatively.

18

4-(2-Phenylphenyl)acetophenone (8c)
Potassium carbonate (138 mg, 1.0 mmol) and Pd-nanoPAMDMAM-SILC 5 (8 mg, 0.005 mmol) were added to a solution of 4-bromoacetophenone (6a, 100 mg, 0.50 mmol) and (2-phenyl)phenylboronic acid (7c, 85 mg, 0.70 mmol) in 50% aq EtOH (2 mL) in open air. The solution was stirred at r.t. for 30 min, then centrifuged for 10 min. After decantation of the organic layer, the powder was rinsed with Et2O-EtOH (1:1, 5 mL) five times. Each time, the resulting homogeneous solution was centrifuged to precipitate the SILC. The combined organic layer was evaporated to dryness under reduced pressure. Purification by column chromatography (EtOAc-n-hexane = 1:10) provided 4-(2-phenylphenyl)acetophenone (8c, 134 mg) in 98% yield.

19

4-(4-Methoxyphenyl)acetophenone (8d) Potassium carbonate (138 mg, 1.0 mmol) and Pd-nanoPAMDMAM-SILC 5 (8 mg, 0.005 mmol) were added to a solution of 4-bromoacetophenone (6a, 101 mg, 0.50 mmol) and 4-methoxyphenylboronic acid (7d, 106 mg, 0.70 mmol) in 50% aq EtOH (2 mL) in open air. The solution was stirred at r.t. for 30 min, then centrifuged for 10 min. After decantation of the organic layer, the powder was rinsed with Et2O-EtOH (1:1, 5 mL) five times. Each time, the resulting homogeneous solution was centrifuged to precipitate the SILC. The combined organic layer was evaporated to dryness under reduced pressure. Purification by column chromatography (EtOAc-n-hexane = 1:3) provided 4-(4-methoxyphenyl)acetophenone (8d, 104 mg) in 90% yield.