Synlett 2010(7): 1128-1132  
DOI: 10.1055/s-0029-1219588
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Facile, One-Pot Synthesis of Functionalized Spiro-Oxindoles via Vinylogous Aldol Reaction of Vinyl Malononitriles with Isatin Derivatives in Aqueous ­Media

Thelagathoti Hari Babu, K. Karthik, Paramasivan T. Perumal*
Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
Fax: +91(44)24911589; e-Mail: ptperumal@gmail.com;
Further Information

Publication History

Received 2 February 2010
Publication Date:
16 March 2010 (online)

Abstract

A novel, one-pot approach to functionalized spirocyclic oxindoles has been developed by using vinyl malononitriles and isatin derivatives via vinylogous aldol reaction in aqueous media catalyzed by triethylamine.

    References and Notes

  • 1 Carey FA. Sundberg RJ. Advanced Organic Chemistry   4th ed.:  Kluwer; New York: 2000.  p.57 
  • 2 Fuson RC. Chem. Rev.  1935,  16:  1 
  • 3a Denmark SE. Heemstra JRJr. Beutner GL. Angew. Chem. Int. Ed.  2005,  44:  4682 
  • 3b Casiraghi G. Zanardi F. Chem. Rev.  2000,  100:  1929 
  • 4 Bur SK. Martin SF. Tetrahedron  2001,  57:  3221 
  • 5a Chen Y.-C. Xue D. Deng J.-G. Cui X. Zhu J. Jiang Y.-Z. Tetrahedron Lett.  2004,  45:  1555 
  • 5b Xue D. Chen Y.-C. Cui X. Wang Q.-W. Zhu J. Deng J.-G. J. Org. Chem.  2005,  70:  3584 
  • 6a For similar work by Jørgensen, see: Xue D. Chen Y.-C. Cun L.-F. Wang Q.-W. Zhu J. Deng J.-G. Org. Lett.  2005,  7:  5293 
  • 6b Poulsen TB. Alemparte C. Jørgensen KA. J. Am. Chem. Soc.  2005,  127:  11614 
  • 6c Poulsen TB. Bell M. Jørgensen KA. Org. Biomol. Chem.  2006,  4:  63 
  • 7 For a recent review on vinylogous reactions, see: Denmark SEJr. Heemstra JR. Beutner GL. Angew. Chem. Int. Ed.  2005,  44:  4682 
  • 8 Babu TH. Joseph AA. Muralidharan D. Perumal PT. Tetrahedron Lett.  2010,  51:  994 
  • 9a Kosuge T. Zenda H. Ochiai A. Masaki N. Noguchi M. Kimura S. Narita H. Tetrahedron Lett.  1972,  2545 
  • 9b Jossang A. Jossang P. Hadi HA. Sevenet T. Bodo B. J. Org. Chem.  1991,  56:  6527 
  • 9c James MNG. Williams GJB. Can. J. Chem.  1972,  50:  2407 
  • 9d Hilton ST. Ho TCT. Pljevaljcic G. Jones K. Org. Lett.  2000,  2:  2639 
  • 9e Elderfield RC. Gilman RE. Phytochemistry  1972,  11:  339 
  • 9f Overman LE. Rosen MD. Angew. Chem. Int. Ed.  2000,  39:  4596 
  • 9g Lerchner A. Carriera EM. J. Am. Chem. Soc.  2002,  124:  14826 
  • 9h vonKyburz R. Schopp E. Bick IRC. Hesse M. Helv. Chim. Acta  1981,  64:  2555 
  • For selected examples, see:
  • 10a Ding K. Lu Y. Nikolovska-Coleska Z. Qiu S. Ding Y. Gao W. Stuckey J. Krajewski K. Roller PP. Tomita Y. Parrish DA. Deschamps JR. Wang S. J. Am. Chem. Soc.  2005,  127:  10130 
  • 10b Chen C. Li X. Neumann CS. Lo MM.-C. Schreiber SL. Angew. Chem. Int. Ed.  2005,  44:  2249 
  • 10c Bella M. Kobbelgaard S. Jørgensen KA. J. Am. Chem. Soc.  2005,  127:  3670 
  • 10d Ready JM. Reisman SE. Hirata M. Weiss MM. Tamaki K. Ovaska TV. Wood JL. Angew. Chem. Int. Ed.  2004,  43:  1270 
  • 10e Lo MM.-C. Neumann CS. Nagayama S. Perlstein EO. Schreiber SL. J. Am. Chem. Soc.  2004,  126:  16077 
  • 10f Rehn S. Bergman J. Stensland B. Eur. J. Org. Chem.  2004,  413 
  • 10g Nishikawa T. Kajii S. Isobe M. Synlett  2004,  2025 
  • 10h Williams RM. Cao J. Tsujishima H. Cox RJ. J. Am. Chem. Soc.  2003,  125:  12172 
  • 10i Bagul TD. Lakshmaiah G. Kawabat T. Fuji K. Org. Lett.  2002,  4:  249 
  • 10j Lerchner A. Carreira EM. J. Am. Chem. Soc.  2002,  124:  14826 
  • 10k Lin X. Weinreb SM. Tetrahedron Lett.  2001,  42:  2631 
  • 10l Edmondson S. Danishefsky SJ. Angew. Chem. Int. Ed.  1998,  37:  1138 
  • 11a Nair V. Biju AT. Vinod AU. Suresh E. Org. Lett.  2005,  7:  5139 
  • 11b Basavaiah D. Rao JS. Reddy RJ. Rao AJ. Chem. Commun.  2005,  2621 
  • 11c Nair V. Mathai S. Mathew SC. Rath NP. Tetrahedron  2005,  61:  2849 
  • 11d Zhang Y. Wang L. Zhang M. Fun H.-K. Xu J.-H. Org. Lett.  2004,  6:  4893 
  • 11e Nair V. Mathai S. Augustine A. Radhakrishnan SVKV. Synthesis  2004,  2617 
  • 11f Muthusamy S. Gunanathan C. Nethaji M. J. Org. Chem.  2004,  69:  5631 
  • 11g Smet M. Van Oosterwijck C. Van Hecke K. Van Meervelt L. Vandendriessche A. Dehaen W. Synlett  2004,  2388 
  • 11h Nair V. Rajesh C. Dhanya R. Rath NP. Tetrahedron Lett.  2002,  43:  5349 
  • 11i Lee S. Hartwig J. J. Org. Chem.  2001,  66:  3402 
  • 11j Tobisu M. Chatani N. Asaumi T. Amako K. Ie Y. Fukumoto Y. Murai S. J. Am. Chem. Soc.  2000,  122:  12663 
  • 12a Franz AK. Dreyfuss PD. Schreiber SL. J. Am. Chem. Soc.  2007,  129:  1020 
  • 12b Alcaide B. Almendros P. Rodriguez-Acebes R. J. Org. Chem.  2006,  71:  2346 
  • 12c Wang L. Zhang Y. Hu H.-Y. Fun H.-K. Xu J.-H.
    J. Org. Chem.  2005,  70:  3850 
  • 12d Smet M. Oosterwijck CV. Hecke KV. Meervelt LV. Vandendriessche A. Dehaen W. Synlett  2004,  2388 
  • 12e Muthusamy S. Gunanathan C. Nethaji M. J. Org. Chem.  2004,  69:  5631 
  • 13a Savitha G. Niveditha SK. Muralidharan D. Perumal PT. Tetrahedron Lett.  2007,  48:  2943 
  • 13b Shanthi G. Perumal PT. Tetrahedron Lett.  2007,  48:  6785 
  • 13c Shanthi G. Subbulakshmi G. Perumal PT. Tetrahedron  2007,  63:  2057 
  • 13d Shanthi G. Perumal PT. Synlett  2008,  18:  2791 
  • 13e Shanthi G. Perumal PT. Tetrahedron Lett.  2009,  50:  3959 
  • 13f Babu TH. Shanthi G. Perumal PT. Tetrahedron Lett.  2009,  50:  2881 
  • 13g Selvam NP. Babu TH. Perumal PT. Tetrahedron  2009,  65:  8524 
14

General Procedure for the Synthesis of Spiro-Oxindole 3c: To a stirred solution of vinyl malononitrile 2a (1 mmol) and Et3N (1 mmol) in H2O-EtOH (1:1; 10 mL) at r.t., was added isatin 1c (1 mmol) and stirring was continued for about 25 min. After the reaction was complete as indicated by TLC, the solvent mixture was evaporated under vacuo. The crude product, on chromatographic purification over silica gel (Merck; 100-200 mesh; EtOAc-hexane, 3:7), yielded the desired spiro-oxindole in 87% as a single diastereomer.
Spectral Data of Spiro-Oxindole 3c (Table 2, entry 3): Yield: 87%; off-white solid; mp 196 ˚C. ¹H NMR (500 MHz, DMSO-d 6): δ = 0.37 (q, J = 13 Hz, 1 H), 1.37 (m, 2 H), 1.57 (m, 1 H), 1.88 (m, 1 H), 2.04 (m, 1 H), 2.83 (d, J = 9.9 Hz, 1 H), 4.32 (ABq, J = 16.8 Hz, 2 H), 5.16 (t, J = 9.15 Hz, 2 H), 5.46 (s, 1 H), 5.80 (m, 1 H), 7.03 (s, 2 H, D2O exchangeable), 7.06 (d, J = 7.65 Hz, 1 H), 7.09 (d, J = 7.65 Hz, 1 H), 7.13 (d, J = 7.65 Hz, 1 H), 7.37 (t, J = 7.65 Hz, 1 H). ¹³C NMR (125 MHz, DMSO-d 6): δ = 21.3, 22.9, 24.7, 38.1, 42.3, 60.9, 81.9, 110.4, 114.5, 117.9, 118.7, 123.9, 125.1, 125.3, 125.5, 131.3, 131.7, 143.3, 162.1, 171.2. IR (KBr): 3403, 3311, 3242, 3198, 2195, 1706, 1636, 1422, 1377, 763 cm. MS (ESI): m/z = 334 [M + 1]. Anal. Calcd for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 71.09; H, 5.61; N, 12.53.

15

Crystallographic data for compound 3d in this paper have been deposited with the Cambridge Crystallographic Data centre as supplemental publication No. CCDC 761167. Copies of the data can be obtained, free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or email: deposit@ccdc.cam.ac.uk]

16

Spectral Data of Compound 6 (Table 2, entry 17): Yield: 75%; yellow solid; mp 192 ˚C. ¹H NMR (500 MHz, DMSO-d 6): δ = 0.15 (q, J = 12.2 Hz, 1 H), 1.11 (m, 1 H), 1.35 (m, 2 H), 1.81 (m, 1 H), 1.98 (m, 1 H), 2.95 (s, 1 H), 5.48 (s, 1 H), 6.97 (s, 2 H, D2O exchangeable), 7.45 (d, J = 6.9 Hz, 1 H), 7.72 (t, J = 7.65 Hz, 1 H), 7.85 (t, J = 7.65 Hz, 1 H), 8.05 (dd, J = 6.9, 8.4 Hz, 2 H), 8.33 (d, J = 8.4 Hz, 1 H). ¹³C NMR (125 MHz, DMSO-d 6): δ = 21.3, 23.2, 24.6, 38.0, 61.0, 85.2, 114.3, 119.0, 122.5, 123.3, 126.2, 127.3, 129.5, 129.8, 130.3, 130.7, 133.8, 134.5, 142.5, 162.9, 198.3. IR (KBr): 3421, 3322, 3194, 2927, 2193, 1713, 1632, 1581, 1010, 783 cm. MS (ESI): m/z = 329 [M + 1]. Anal. Calcd for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 71.09; H, 5.61; N, 12.53.