Synlett 2010(7): 1047-1050  
DOI: 10.1055/s-0029-1219577
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

The First One-Pot Synthesis of Morita-Baylis-Hillman Adducts Starting Directly from Alcohols

Lal Dhar Singh Yadav*, Vishnu Prabhakar Srivastava, Rajesh Patel
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 5 January 2010
Publication Date:
10 March 2010 (online)

Abstract

The first example of one-pot oxidative carbon-carbon bond formation via the Morita-Baylis-Hillman reaction using alcohols is reported. The protocol involves silica gel-DABCO catalyzed oxidation of alcohols to aldehydes with chloramine-T followed by their Morita-Baylis-Hillman reaction with acrylonitrile or methyl acrylate to give 70-87% overall yields of the corresponding ­Morita-Baylis-Hillman adducts. The present work opens up a new and efficient synthetic route to Morita-Baylis-Hillman adducts directly from alcohols in a one-pot operation.

    References and Notes

  • 1a Morita K. Suzuki Z. Hirose H. Bull. Chem. Soc. Jpn.  1968,  41:  2815 
  • 1b Baylis AB, and Hillman MED. inventors; Offenlegungsschrift 2155113, 1972;  US 3,743,669.  1972; Chem. Abstr. 1972, 77, 34174
  • 1c Ciganek E. In Organic Reactions   Vol. 51:  Wiley; New York: 1997.  p.201 
  • 1d Ghosh AK. Bilcer G. Schiltz G. Synthesis  2001,  2203 
  • 2a Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 2b Basavaiah D. Rao KV. Reddy RJ. Chem. Soc. Rev.  2007,  36:  1581 
  • 2c Singh V. Batra S. Tetrahedron  2008,  64:  4511 
  • 3a Kim JN. Lee KY. Curr. Org. Chem.  2002,  627 
  • 3b Wasnaire P. de Merode T. Marko IE. Chem. Commun.  2007,  4755 
  • 3c Kim HS. Kim HS. Kim JN. Bull. Korean Chem. Soc.  2007,  28:  1841 
  • 3d Cabrera S. Aleman J. Bolze P. Bertelsen S. Jorgensen KA. Angew. Chem. Int. Ed.  2008,  47:  121 
  • 3e Ye L.-W. Han X. Sun X.-L. Tang Y. Tetrahedron  2008,  64:  1487 
  • 3f Grange RL. Ziogas J. North AJ. Angus JA. Schiesser CH. Bioorg. Med. Chem. Lett.  2008,  18:  1241 
  • 3g Cha MJ. Song YS. Han E.-G. Lee K.-J. J. Heterocycl. Chem.  2008,  235 
  • 3h Sa MM. Fernandes L. Ferreira M. Bortoluzzi AJ. Tetrahedron Lett.  2008,  49:  1228 
  • 3i Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2009,  50:  1423 
  • 3j Yadav LDS. Patel R. Srivastava VP. Tetrahedron Lett.  2009,  50:  1335 
  • 3k Reddy CR. Kiranmai N. Johny K. Pendke M. Naresh P. Synthesis  2009,  399 
  • 3l Nayak M. Batra S. Eur. J. Org. Chem.  2009,  3505 
  • 4a Isaacs NS. Tetrahedron  1991,  47:  8463 
  • 4b Rozendaal ELM. Voss BMW. Scheeren HW. Tetrahedron  1993,  49:  6931 
  • 4c Roos GHP. Rampersadh P. Synth. Commun.  1993,  23:  1261 
  • 4d Bode ML. Kaye PT. J. Chem. Soc., Perkin Trans. 1  1993,  1809 
  • 4e Kundu MK. Mukherjee SB. Balu N. Padmakumar R. Bhat SV. Synlett  1994,  444 
  • 4f Brzezinski LJ. Rafel S. Leahy JW. Tetrahedron  1997,  53:  16423 
  • 4g Brzezinski LJ. Rafel S. Leahy JW. J. Am. Chem. Soc.  1997,  119:  4317 
  • 4h Almeida WP. Coelho F. Tetrahedron Lett.  1998,  39:  8609. 
  • 4i Masunari A. Ishida E. Trazzi G. Almeida WP. Coelho F. Synth. Commun.  2001,  31:  2127 
  • 4j Yu C. Liu B. Hu L. J. Org. Chem.  2001,  66:  5413 
  • 4k Balan D. Adolfsson H. J. Org. Chem.  2001,  66:  6498 
  • 4l Balan D. Adolfsson H. J. Org. Chem.  2002,  67:  2329 
  • 4m Aggarwal VK. Dean DK. Mereu A. Williams R. J. Org. Chem.  2002,  67:  510 
  • 4n Cai J. Zhou Z. Zhao G. Tang C. Org. Lett.  2002,  4:  4723 
  • 4o Chandraekhar S. Narsihmulu Ch. Saritha B. Sultana SS. Tetrahedron Lett.  2004,  45:  5865 
  • 4p Mi X. Luo S. Cheng J.-P. J. Org. Chem.  2005,  70:  2338 
  • 4q de Souza ROMA. Pereira VLP. Esteves PM. Vasconcellos MLAA. Tetrahedron Lett.  2008,  49:  5902 
  • 4r Bugarin A. Connell BT. J. Org. Chem.  2009,  74:  4638 
  • 5a Baran PS. Ambhaikar NB. G uerrero CA. Hafensteiner BD. Lin DW. Richter JM. ARKIVOC  2006,  (vii):  310 
  • 5b Lei M. Hu R.-J. Wang Y.-G. Tetrahedron  2006,  62:  8928 
  • 5c Matsuo J.-I. Kawai H. Ishibashi H. Tetrahedron Lett.  2007,  48:  3155 
  • 5d Huertu R. Flores-Figueroa A. Ugalde-Saldivar VM. Castillo I. Inorg. Chem.  2007,  46:  9510 
  • 5e Clift MD. Taylor CN. Tomson RJ. Org. Lett.  2007,  9:  4667 
  • 5f Konkol LC. Jones BT. Thomson RJ. Org. Lett.  2009,  11:  5550 
  • 6a Yeo JE. Yang X. Kim HJ. Koo S. Chem. Commun.  2004,  236 
  • 6b Krishna PR. Kannan V. Sharma GVM. J. Org. Chem.  2004,  69:  6467 
  • 7a Tandon M. Krishna PKZ. Phys. Chem.  1985,  266:  1153 
  • 7b Mantzavinos D. Hellenbrand R. Livingston AG. Metcalfs IS. Appl. Catal., B  1996,  11:  99 
  • 7c Singh RA. Singh RS. Oxid. Commun.  1997,  20:  248 
  • 7d Konyukhov VY. Chernaa IV. Naumov VA. Kinet. Catal.  1997,  38:  811 
  • 7e Navarro M. De Giovani WF. Romero JR. J. Mol. Catal. A: Chem.  1998,  135:  249 
  • 7f Hirano M. Kojima K. Yakabe S. Morimoto T. J. Chem. Res. Synop.  2001,  274 
  • 7g Svetlakov NV. Nikitin VG. Orekhova AO. Russian J. Org. Chem.  2002,  38:  753 
  • 7h Joseph JK. Jain SL. Sain B. Eur. J. Org. Chem.  2006,  590 
  • 7i Kguchi S. Kitazume T. Tetrahedron Lett.  2006,  47:  2797 
  • 7j Jiang N. Ragauskas AJ. Tetrahedron Lett.  2007,  48:  273 
  • 8 Cainelli G. Cardillo G. Chromium Oxidations in Organic Chemistry   Springer; Berlin: 1984. 
  • 9 Harding KE. May LM. Dick KF. J. Org. Chem.  1975,  40:  1664 
  • 10 Collins JC. Hess WW. Frank FJ. Tetrahedron Lett.  1968,  9:  3363 
  • 11 Corey EJ. Suggs JW. Tetrahedron  1975,  31:  2647 
  • 12 Omura K. Swern D. Tetrahedron  1978,  34:  1651 
  • 13 Annelli PL. Montanari F. Quici S. Org. Synth.  1990,  69:  212 
  • 14a Frigerio M. Santagostino M. Tetrahedron Lett.  1994,  35:  8019 
  • 14b Frigerio M. Santagostino M. Sputore S. Palmisano G. J. Org. Chem.  1995,  60:  7272 
  • 14c De Munari S. Frigerio M. Santagostino M. J. Org. Chem.  1996,  61:  9272 
  • 14d Frigerio M. Santagostino M. Sputore S. J. Org. Chem.  1999,  64:  4537 
  • 15a Zhdankin VV. Stang PJ. Chem. Rev.  2002,  102:  2523 
  • 15b Wirth T. Angew. Chem. Int. Ed.  2005,  44:  3656 
  • 15c Ladziata U. Zhdankin VV. ARKIVOC  2006,  (ix):  26 
  • 15d Zhdankin VV. Stang PJ. Chem. Rev.  2008,  108:  5299 
  • 16a Richardson RD. Zayed JM. Altermann S. Smith D. Wirth T. Angew. Chem. Int. Ed.  2007,  46:  6529 
  • 16b More JD. Finney NS. Org. Lett.  2002,  4:  3001 
  • 17a Banergi KK. Bull. Chem. Soc. Jpn.  1977,  50:  1616 
  • 17b Kitagawa H. Mkaiyama T. Chem. Pharm. Bull.  2002,  50:  1276 
  • 17c Vinod KN. . Gowda KNN. Inorg. Chim. Acta  2009,  362:  2044 
  • 18a Minakata S. Kano D. Oderaotoshi Y. Komatsu M. Angew. Chem. Int. Ed.  2004,  43:  79 
  • 18b Minakata S. Hotta T. Oderaotoshi Y. Komatsu M. J. Org. Chem.  2006,  71:  7471 
  • 19a Ando T. Kano D. Minakat S. Ryu I. Komatsu M. Tetrahedron  1998,  54:  13485 
  • 19b Le Questel JY. Berthelot M. Laurence C. J. Phys. Org. Chem.  2000,  13:  347 
  • 19c D’hooghe M. Rottiers M. Kerkaert I. De Kimpe N. Tetrahedron  2005,  61:  8746 
  • 19d Minakata S. Hotta T. Oderaostoshi Y. Komatsu M. J. Org. Chem.  2006,  71:  7471 
  • 19e Jung Y. Marcus RA. J. Am. Chem. Soc.  2007,  129:  5492 
  • 19f Minakata S. Komatsu M. Chem. Rev.  2009,  109:  711 
  • 20 Witula T. Holmberg K. Langmuir  2005,  21:  3782 
  • 21a Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2008,  49:  3142 
  • 21b Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2008,  49:  5652 
  • 21c Yadav LDS. Patel R. Srivastava VP. Synlett  2008,  1789 
  • 21d Yadav LDS. Awasthi C. Tetrahedron Lett.  2009,  50:  3801 
  • 21e Yadav LDS. Rai VK. Tetrahedron Lett.  2009,  50:  2414 
  • 21f Yadav LDS. Rai VK. Singh S. Synlett  2009,  1423 
  • 23 Gong H. Cai C.-Q. Yang N.-F. Yang L.-W. Ahang J. Fan Q.-H. J. Mol. Catal. A: Chem.  2006,  249:  236 
22

General Procedure for the Synthesis of MBH Adducts 6
A mixture of alcohol 1 (5 mmol), chloramine-T (2, 5 mmol), DABCO (5 mmol), and SiO2 (200 mg) in 1,4-dioxane-H2O (3 mL, 1:1) was stirred at r.t. until the chloramine-T was consumed (6-24 h), then acrylonitrile or methyl acrylate (15 mmol) was added and the mixture was stirred at r.t. for 5-45 h (Table  [²] ).The reaction progress was monitored by TLC. Upon completion, the reaction mixture was evaporated under reduced pressure and extracted with EtOAc (3 × 5 mL). The combined organic phase was dried over MgSO4, filtered, and evaporated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using hexane-EtOAc as eluent to give pure products 6. The structure of the products was confirmed by comparison of their mp or bp, TLC, IR, and NMR data with authentic samples prepared by literature methods.4j,n,o,q,²³