References and Notes
<A NAME="RG02410ST-1A">1a</A>
Farutin V.
Masterson L.
Andricopulo AD.
Cheng J.
Riley B.
Hakimi R.
Frazer JW.
Cordes EH.
J.
Med. Chem.
1999,
42:
2422
<A NAME="RG02410ST-1B">1b</A>
Evans GB.
Furneaux RH.
Gainsford GJ.
Hanson JC.
Kicska GA.
Sauve AA.
Schramm VL.
Tyler PC.
J. Med. Chem.
2003,
46:
155
<A NAME="RG02410ST-2A">2a</A>
Gangjee A.
Li W.
Yang J.
Kisliuk RL.
J.
Med. Chem.
2008,
51:
68
<A NAME="RG02410ST-2B">2b</A>
Bavetsias V.
Jackman AL.
Curr. Med. Chem.
1998,
5:
265
<A NAME="RG02410ST-3">3</A>
Norman MH.
Chen N.
Chen Z.
Fotsch C.
Hale C.
Han N.
Hurt R.
Jenkins T.
Kincaid J.
Liu L.
Lu Y.
Moreno O.
Santora VJ.
Sonnenberg JD.
Karbon W.
J.
Med. Chem.
1994,
37:
1526 ;
and ref. 16-19 therein
<A NAME="RG02410ST-4A">4a</A>
Fredholm BB.
Zerman AP.
Jacobson KA.
Koltz K.-N.
Luiden J.
Pharmacol.
Rev.
2001,
53:
527
<A NAME="RG02410ST-4B">4b</A>
Grahner B.
Winiwarter S.
Lanzner W.
Muller CE.
J. Med. Chem.
2000,
43:
4288
<A NAME="RG02410ST-4C">4c</A>
Stefanachi A.
Nicolotti O.
Leonetti F.
Cellamare S.
Campagna F.
Loza MI.
Brea JM.
Mazza F.
Gavuzzo E.
Carotti A.
Bioorg. Med. Chem.
2008,
16:
9780
<A NAME="RG02410ST-5A">5a</A>
Pfleiderer M.
Chem. Ber.
1957,
90:
738
<A NAME="RG02410ST-5B">5b</A>
Kawahara N.
Nakajima T.
Itoh T.
Ogura H.
Chem. Pharm. Bull.
1985,
33:
4740
<A NAME="RG02410ST-5C">5c</A>
Sizova OS.
Glushkov RG.
Pharm. Chem.
J.
1984,
18:
420
<A NAME="RG02410ST-5D">5d</A>
Brahta M.
Daves GD.
J. Chem.
Soc., Perkin Trans. 1
1992,
1883
<A NAME="RG02410ST-5E">5e</A>
Majumdar
KC.
Das U.
Jana NK.
J. Org. Chem.
1998,
63:
3550
<A NAME="RG02410ST-5F">5f</A>
De Jong RL.
Davidso JG.
Dozeman GJ.
Fiore
PJ.
Giri P.
Kelly ME.
Puls TP.
Seamans RE.
Org. Process Res. Dev.
2001,
5:
216
<A NAME="RG02410ST-5G">5g</A>
Majumdar KC.
Mondal S.
Tetrahedron
2009,
65:
9604
<A NAME="RG02410ST-5H">5h</A>
Song JJ.
Tan Z.
Reeves JT.
Fandrick DR.
Lee H.
Yee NK.
Senanayake CH.
Tetrahedron Lett.
2009,
50:
3952
<A NAME="RG02410ST-6A">6a</A>
Cupps TL.
Wise DS.
Townsend LB.
J. Org. Chem.
1983,
48:
1060
<A NAME="RG02410ST-6B">6b</A>
Cupps TL.
Wise DS.
Townsend
LB.
Tetrahedron Lett.
1982,
23:
4759
<A NAME="RG02410ST-6C">6c</A>
Otmar M.
Masojidkova M.
Budesinsky M.
Holy A.
Tetrahedron
1998,
54:
2931
<A NAME="RG02410ST-6D">6d</A>
Evans GB.
Furneaux RH.
Hutchison TL.
Kezar HD.
Morris PE.
Schramm
LT.
Tyler PC.
J.
Org. Chem.
2001,
66:
5723
<A NAME="RG02410ST-7A">7a</A>
Rodriguez AL.
Koradin C.
Dohle N.
Knochel P.
Angew.
Chem. Int. Ed.
2000,
39:
2488
<A NAME="RG02410ST-7B">7b</A>
Susvilo I.
Brukstus A.
Tumkevicius S.
Synlett
2003,
1151
<A NAME="RG02410ST-7C">7c</A>
Cikotiene I.
Pudziuvelyte E.
Brukstus A.
J.
Heterocycl. Chem.
2008,
45:
1615
<A NAME="RG02410ST-8A">8a</A>
Muller TE.
Beller M.
Chem.
Rev.
1998,
98:
675
<A NAME="RG02410ST-8B">8b</A>
Beller M.
Riermeier TH. In
Transition Metals for Organic Synthesis
Wiley-VCH;
Weinheim:
1998.
<A NAME="RG02410ST-8C">8c</A>
Teles JH.
Brode S.
Chabanas M.
Angew. Chem.
1998,
110:
1478
<A NAME="RG02410ST-8D">8d</A>
Koradin C.
Dohle W.
Rodriguez
AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571
<A NAME="RG02410ST-9A">9a</A>
Cikotiene I.
Morkunas M.
Motiejaitis D.
Rudys S.
Brukstus A.
Synlett
2008,
1693
<A NAME="RG02410ST-9B">9b</A>
Cikotiene I.
Kairys V.
Buksnaitiene R.
Morkunas M.
Motiejaitis D.
Rudys S.
Brukstus A.
Fernandes MX.
Tetrahedron
2009,
65:
5752
<A NAME="RG02410ST-9C">9c</A>
Cikotiene I.
Morkunas M.
Synlett
2009,
284
<A NAME="RG02410ST-9D">9d</A>
Cikotiene I.
Morkunas M.
Rudys S.
Buksnaitiene R.
Brukstus A.
Synlett
2008,
2799
<A NAME="RG02410ST-10">10</A>
Cikotiene I.
Pudziuvelyte E.
Brukstus A.
Tumkevicius S.
Tetrahedron
2007,
63:
8145
<A NAME="RG02410ST-11">11</A>
Typical Procedure
for the Preparation of 2,4-Disubstituted 6-Arylpyrrolo[3,2-
d
]pyrimidines
4a-o
To a solution of the corresponding 6-arylethynyl-5-nitro-pyrimidine 1a-p (0.3
mmol) in MeOH (5 mL) freshly distilled Et2NH (21,9 mg,
0.3 mmol) was added. The resulting reaction mixture was refluxed
for 15 min, then deeply red solution was cooled to r.t., 10% Pd/C
(0.33 mg, 0.03 mmol) was added, and the resulted mixture was stirred under
H2 atmosphere for 2 h. After the completion of the reaction,
the catalyst was filtered off, the mother liquid was evaporated
under reduced pressure, the residue washed with H2O,
filtered, and recrystallized to give compounds 4a-p.
4-Amino-6-phenylpyrrolo[3,2-
d
]pyrimidine
(4a)
Yield 98%; mp 226-227 ˚C
(from DMF-H2O). IR (KBr): νmax = 3444,
3441, 3396 (NH, NH2) cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 6.81
(br s, 2 H, NH2), 6.86 (s, 1 H, C7H), 7.38 (t, J = 7.5 Hz,
1 H, ArH), 7.51 (t, J = 7.5
Hz, 2 H, ArH), 7.87 (d, J = 7.5
Hz, 2 H, ArH), 8.11 (s, 1 H, C2H), 11.64 (br s, 1 H, NH) ppm. ¹³C
NMR (75 Hz, DMSO-d
6): δ = 98.6,
114.7, 125.1, 128.3, 129.0, 131.1, 131.4, 139.4, 150.2, 150.7 ppm.
Anal. Calcd for C12H10N4: C, 68.56;
H, 4.79; N, 26.65. Found: C, 68.37; H, 4.51; N, 26.88.
4-Amino-2-methylthio-6-phenylpyrrolo[3,2-
d
]pyrimi-dine
(4e)
Yield 82%; mp 235-237 ˚C
(from DMF-H2O). IR (KBr): νmax = 3446,
3443, 3398 (NH, NH2) cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 2.45
(s, 3 H, SCH3), 6.77 (s, 1 H, C7H), 7.14 (br s, 2 H,
NH2), 7.36 (t, J = 7.5
Hz, 1 H, ArH), 7.49 (t, J = 7.5
Hz, 2 H, ArH), 7.91 (d, J = 7.5
Hz, 2 H, ArH), 12.19 (br s, 1 H, NH) ppm. ¹³C
NMR (75 Hz, DMSO-d
6): δ = 13.4,
98.8, 112.9, 125.2, 127.4, 128.1, 131.5, 139.5, 148.8, 150.3, 160.6
ppm. Anal. Calcd for C13H12N4S:
C, 60.91; H, 4.72; N, 21.86. Found: C, 60.77; H, 4.66; N, 21.99.
4-Morpholino-6-phenylpyrrolo[3,2-
d
]pyrimidine
(4p)
Yield 88%; mp >230 ˚C
(dec.; from MeOH). IR (KBr): νmax = 3341
(NH) cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 3.87
(br s, 8 H, morpholino), 6.86 (s, 1 H, C7H), 7.41-7.48
(m, 3 H, ArH), 7.72 (d, J = 7.2
Hz, 2 H, ArH), 8.52 (s, 1 H, C2H), 9.23 (br s, 1 H, NH) ppm. ¹³C
NMR (75 Hz, CDCl3): δ = 46.8,
66.6, 100.9, 116.4, 125.9, 129.1, 129.2, 131.2, 142.1, 150.8, 150.9,
151.4 ppm. Anal. Calcd for C16H16N4O:
C, 68.55; H, 5.75; N, 19.99. Found: C, 68.50; H, 5.66; N, 20.08.
<A NAME="RG02410ST-12">12</A>
Compounds 4b-d,f-o and 5a were
also fully characterized by IR, ¹H NMR, ¹³C
NMR spectroscopic and microanalytical data.