Abstract
Cycloisomerization of α,β-acetylenic oximes
leading to substituted isoxazoles was achieved using AuCl3 as
catalyst, under moderate reaction conditions. The reaction can be
applied to various acetylenic oximes and gives good to excellent
yields. The methodology is amenable for the selective synthesis
of 3-substituted, 5-substituted or 3,5-disubstituted isoxazoles
by simply altering the substituents on the acetylenic oximes.
Key words
α,β-acetylenic oximes - gold(III)
chloride - cycloisomerization - isoxazoles
References and Notes
<A NAME="RG36809ST-1A">1a </A>
Carlsen L.
Dopp D.
Dopp H.
Duus F.
Hartman H.
Lang-Fugmann S.
Schulze B.
Smalley RK.
Wakefield BJ. In
Houben-Weyl Methods
of Organic Chemistry
Vol. E8a:
Schaumann E.
Georg Thieme Verlag;
Stuttgart, Germany:
1992.
p.45-204
<A NAME="RG36809ST-1B">1b </A>
Sperry J.
Wright D.
Curr. Opin. Drug Discovery Dev.
2005,
8:
723
<A NAME="RG36809ST-2A">2a </A>
Daidone G.
Raffa D.
Maggio B.
Plescia F.
Cutuli VMC.
Mangano NG.
Caruso A.
Arch.
Pharm. Pharm. Med. Chem.
1999,
332:
50
<A NAME="RG36809ST-2B">2b </A>
Tomita K.
Takahi Y.
Ishizuka R.
Kamamura S.
Nakagawa M.
Ando M.
Nakanishi T.
Nakamura T.
Udaira H.
Ann.
Sankyo Res. Lab.
1973,
1:
25;
Chem. Abstr. 1974, 80, 120808
<A NAME="RG36809ST-2C">2c </A>
Talley JJ.
Prog. Med. Chem.
1999,
13:
201
<A NAME="RG36809ST-2D">2d </A>
Talley JJ.
Brown DL.
Carter JS.
Graneto MJ.
Koboldt CM.
Masferrer JL.
Perkins WE.
Rogers RS.
Shaffer AF.
Zhang YY.
Zweifel BS.
Seibert K.
J. Med. Chem.
2000,
43:
775
<A NAME="RG36809ST-2E">2e </A>
Giovannoni MP.
Vergelli C.
Ghelardini C.
Galeotti N.
Bartolini A.
Kal Piaz V.
J.
Med. Chem.
2003,
46:
1055
<A NAME="RG36809ST-2F">2f </A>
Li W.-T.
Hwang D.-R.
Chen C.-P.
Shen C.-W.
Huang C.-L.
Chen T.-W.
Lin C.-H.
Chang Y.-L.
Chang Y.-Y.
Lo Y.-K.
Tseng H.-Y.
Lin C.-C.
Song J.-S.
Chen H.-C.
Chen S.-J.
Wu S.-H.
Chen C.-T.
J.
Med. Chem.
2003,
46:
1706
<A NAME="RG36809ST-3A">3a </A>
Roy AK.
Rajaraman B.
Batra S.
Tetrahedron
2004,
60:
2301
<A NAME="RG36809ST-3B">3b </A>
Wankhede KS.
Vaidya VV.
Sarang PS.
Salunkhe MM.
Trivedi GK.
Tetrahedron Lett.
2008,
49:
2069
<A NAME="RG36809ST-4A">4a </A>
Takenaka K.
Nakatsuka S.
Tsujihara T.
Koranne
PS.
Sasai H.
Tetrahedron:
Asymmetry
2008,
19:
2492
<A NAME="RG36809ST-4B">4b </A>
Koranne PS.
Tsujihara T.
Arai MA.
Bajracharya GB.
Suzuki
T., Onitsuka K., Sasai H.
Tetrahedron: Asymmetry
2007,
18:
919
<A NAME="RG36809ST-5A">5a </A>
Tanaka M.
Haino T.
Ideta K.
Kubo K.
Mori A.
Fukazawa Y.
Tetrahedron
2007,
63:
652
<A NAME="RG36809ST-5B">5b </A>
Tanaka M.
Haino T.
Ideta K.
Kubo K.
Mori A.
Fukazawa Y.
Tetrahedron Lett.
2004,
45:
2277
<A NAME="RG36809ST-5C">5c </A>
Vieira AA.
Bryk
FR.
Conte G.
Bortoluzzi AJ.
Gallardo H.
Tetrahedron Lett.
2009,
50:
905
<A NAME="RG36809ST-6A">6a </A>
Wakefield BJ. In
Science of Synthesis: Houben -Weyl Methods of Molecular Transformations
Vol.
11:
Shaumann E.
Georg
Thieme Verlag;
Stuttgart:
2001.
p.229-288
<A NAME="RG36809ST-6B">6b </A>
Pinho e Melo TMVD.
Curr. Org. Chem.
2005,
9:
925
<A NAME="RG36809ST-6C">6c </A>
Jager V.
Colinas PA. In
Synthetic
Applications of 1,3 -Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products
Vol.
59:
Padwa A.
Wiley;
Hoboken:
2002.
p.361-472
<A NAME="RG36809ST-7A">7a </A>
Tang S.
He J.
Sun Y.
He L.
She X.
Org.
Lett.
2009,
11:
3982
<A NAME="RG36809ST-7B">7b </A>
Bourbeau MP.
Rider JT.
Org.
Lett.
2006,
8:
3679
<A NAME="RG36809ST-7C">7c </A>
Waldo JP.
Larock RC.
Org.
Lett.
2005,
7:
5203
<A NAME="RG36809ST-7D">7d </A>
Waldo JP.
Larock RC.
J.
Org. Chem.
2007,
72:
9643
<A NAME="RG36809ST-7E">7e </A>
Hansen TV.
Wu P.
Fokin VV.
J. Org. Chem.
2005,
70:
7761
<A NAME="RG36809ST-7F">7f </A>
Girardin M.
Alsabeh PG.
Lauzon S.
Dolman SJ.
Ouellet SG.
Hughes G.
Org. Lett.
2009,
11:
1159
<A NAME="RG36809ST-7G">7g </A>
Lautens M.
Roy A.
Org. Lett.
2000,
2:
555
<A NAME="RG36809ST-7H">7h </A>
Wang K.
Xiang D.
Liu J.
Pan W.
Dong D.
Org. Lett.
2008,
10:
1691
<A NAME="RG36809ST-7I">7i </A>
Himo F.
Lovell T.
Hilgraf R.
Rostovtsev VV.
Noodleman L.
Sharpless KB.
Fokin VV.
J. Am. Chem. Soc.
2005,
127:
210
<A NAME="RG36809ST-7J">7j </A>
Grecian S.
Fokin VV.
Angew. Chem. Int. Ed.
2008,
47:
8285
<A NAME="RG36809ST-7K">7k </A>
Xu JP.
Hamme AT.
Synlett
2008,
0919
For reviews of gold-catalyzed organic
reactions, see:
<A NAME="RG36809ST-8A">8a </A>
Hashmi ASK.
Hutchings GJ.
Angew.
Chem. Int. Ed.
2006,
45:
7896
<A NAME="RG36809ST-8B">8b </A>
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RG36809ST-8C">8c </A>
Amijs CHM.
Ferrer C.
Echavarren AM.
Chem. Commun.
2007,
698
<A NAME="RG36809ST-8D">8d </A>
Fürstner A.
Davies PW.
Angew.
Chem. Int. Ed.
2006,
46:
3410
<A NAME="RG36809ST-8E">8e </A>
Hoffmann-Roder A.
Krause N.
Org. Biomol.
Chem.
2005,
3:
387
<A NAME="RG36809ST-8F">8f </A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2005,
44, 6990 ; Angew. Chem . 2005 , 117 , 7150
<A NAME="RG36809ST-8G">8g </A>
Núñez EJ.
Echavarren AM.
Chem.
Commun.
2007,
333
<A NAME="RG36809ST-8H">8h </A>
Widenhoefer RA.
Han X.
Eur. J. Org.
Chem.
2006,
4555
<A NAME="RG36809ST-8I">8i </A>
Shen HC.
Tetrahedron
2008,
64:
7847
<A NAME="RG36809ST-8J">8j </A>
Shen HC.
Tetrahedron
2008,
64:
3885
<A NAME="RG36809ST-8K">8k </A>
Li Z.
Brouwer C.
He C.
Chem.
Rev.
2008,
108:
3289
<A NAME="RG36809ST-8L">8l </A>
Wang M.-Z.
Wong M.-K.
Che C.-M.
Chem.
Eur. J.
2008,
14:
8353
<A NAME="RG36809ST-8M">8m </A>
Ferrer C.
Amijs CHM.
Echavarren AM.
Chem. Eur. J.
2008,
14:
8353
<A NAME="RG36809ST-8N">8n </A>
Gorin DJ.
Toste D.
Nature
2007,
446:
395
<A NAME="RG36809ST-8O">8o </A>
Asao N.
Synlett
2006,
1645
<A NAME="RG36809ST-8P">8p </A>
Ma S.
Yu S.
Gu Z.
Angew.
Chem. Int. Ed.
2006,
45:
200
<A NAME="RG36809ST-8Q">8q </A>
Echavarren AM.
Nevado C.
Chem. Soc.
Rev.
2004,
33:
431
<A NAME="RG36809ST-8R">8r </A>
Dyker G.
Angew.
Chem. Int. Ed.
2000,
39:
4237
<A NAME="RG36809ST-8S">8s </A>
Hashmi ASK.
Gold Bull.
2004,
37:
51
<A NAME="RG36809ST-8T">8t </A>
Ishida T.
Haruta M.
Angew. Chem. Int. Ed.
2007,
46:
7154
<A NAME="RG36809ST-8U">8u </A>
Skouta R.
Li C.-J.
Tetrahedron
2008,
64:
4917
<A NAME="RG36809ST-9">9 </A>
Hashmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem . 2000 , 112, 2382
<A NAME="RG36809ST-10A">10a </A>
Debleds O.
Zotto CD.
Vrancken E.
Campagne
J.-M.
Retaileau E.
Adv. Synth. Catal.
2009,
351:
1991
<A NAME="RG36809ST-10B">10b </A>
Winter C.
Krause N.
Angew. Chem. Int. Ed.
2009,
48:
6339
<A NAME="RG36809ST-10C">10c </A>
Yeom H.-S.
Lee E.-S.
Shin S.
Synlett
2007,
2292
<A NAME="RG36809ST-11A">11a </A>
Weyrauch JP.
Hashmi ASK.
Schuster A.
Hengst T.
Schetter S.
Littmann A.
Rudolph M.
Hamzic M.
Visus J.
Rominger F.
Frey W.
Bats JW.
Chem. Eur. J.
2009,
DOI:
10.1002/chem.200902472
<A NAME="RG36809ST-11B">11b </A>
Hashmi ASK.
Rudolph M.
Schymura S.
Visus J.
Frey W.
Eur.
J. Org. Chem.
2006,
4905
<A NAME="RG36809ST-11C">11c </A>
Hashmi ASK.
Salathé R.
Frey W.
Synlett
2007,
1763
<A NAME="RG36809ST-11D">11d </A>
Hashmi ASK.
Weyruch JP.
Schymura W.
Bats JW.
Org.
Lett.
2004,
6:
4391
<A NAME="RG36809ST-12A">12a </A>
Praveen C.
Sagayaraj YW.
Perumal PT.
Tetrahedron Lett.
2009,
50:
644
<A NAME="RG36809ST-12B">12b </A>
Praveen C.
Kiruthiga P.
Perumal PT.
Synlett
2009,
1990
<A NAME="RG36809ST-12C">12c </A>
Praveen C.
Jegatheesan S.
Perumal PT.
Synlett
2009,
2795
<A NAME="RG36809ST-12D">12d </A>
Praveen C.
Karthikeyan K.
Perumal PT.
Tetrahedron
2009,
65:
9244
<A NAME="RG36809ST-13">13 </A>
Short KM.
Ziegler CBJr.
Tetrahedron
Lett.
1993,
34:
75
<A NAME="RG36809ST-14A">14a </A>
Tohda Y.
Sonogashira K.
Hagihara N.
Synthesis
1977,
1977
<A NAME="RG36809ST-14B">14b </A>
Lin C.-F.
Lu W.-D.
Wang I.-W.
Wu M.-J.
Synlett
2003,
2057
<A NAME="RG36809ST-14C">14c </A>
Kobayashi T.
Tanaka M.
J. Chem. Soc., Chem. Commun.
1981,
333
<A NAME="RG36809ST-14D">14d </A>
Mohamed Ahmed
MS.
Mori A.
Org.
Lett.
2003,
5:
3057
<A NAME="RG36809ST-14E">14e </A>
Birkofer L.
Ritter A.
Uhlenbrauck H.
Chem.
Ber.
1963,
96:
3280
<A NAME="RG36809ST-15">15 </A>
Synthesis of 3-Methyl-5-trimethylsilylisoxazole (3); Typical Procedure : To a solution of
oxime 2n (500 mg, 3.22 mmol) in anhydrous
CH2 Cl2 , was added AuCl3 (9.76 mg,
0.0321 mmol) under an N2 atmosphere and the solution was
stirred for the specified time (Table
[² ]
)
at 30 ˚C. After completion of the reaction (as
indicated by TLC), the reaction mixture was concentrated under reduced
pressure and purified by column chromatography over silica gel (100-200
mesh) to afford pure product, 3-methyl-5-trimethylsilylisoxazole
(3n ) as a yellow oil; IR (neat): 3302, 2912,
1604, 1419, 1338, 1085, 885, 757 cm-¹ . ¹ H
NMR (500 MHz, CDCl3 ): δ = 0.29 [s,
9 H, Si(CH
3 )3 ],
2.29 (s, 3 H, CH3 ), 6.24 (s, 1 H, isoxazolinyl-H ). ¹³ C
NMR (125 MHz, CDCl3 ): δ = -1.8,
10.8, 113.5, 157.7, 177.8. MS (EI): m /z = 172 [M]+ .
Anal. Calcd for C7 H13 NOSi: C, 54.15; H, 8.44;
N, 9.02. Found: C, 53.95; H, 8.47; N, 9.15.