Synlett 2010(3): 407-410  
DOI: 10.1055/s-0029-1219196
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Straightforward Approach towards Substituted Morita-Baylis-Hillman Products via Hydrostannation of Acetylenic Ketones

B. Vasantha Lakshmi, Uli Kazmaier*
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
Fax: +49(681)3022409; e-Mail: u.kazmaier@mx.uni-saarland.de;
Further Information

Publication History

Received 21 October 2009
Publication Date:
14 January 2010 (online)

Abstract

Regioselective molybdenum-catalyzed hydrostannations of acetylenic ketones give rise to allenoxystannanes, which can be subjected to subsequent aldol reactions. Because aldehydes are not affected under the reaction conditions used, the hydrostannation-­aldol addition can be performed as a one-pot reaction, providing easy access to substituted Morita-Baylis-Hillman-type products in a highly stereoselective fashion.

    References and Notes

  • For recent reviews, see:
  • 1a Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 1b Basavaiah D. Rao KV. Reddy RJ. Chem. Soc. Rev.  2007,  36:  1581 
  • 1c Masson G. Housseman C. Zhu J. Angew. Chem. Int. Ed.  2007,  46:  4614 ; Angew. Chem. 2007, 119, 4698
  • 1d Shi Y.-L. Shi M. Eur. J. Org. Chem.  2007,  2905 ; and references cited therein
  • 2 For a very recent review on aza-Morita-Baylis-Hillman reactions, see: Declerck V. Martinez M. Lamaty F. Chem. Rev.  2009,  109:  1 
  • 3a Trost BM. Brennan MK. Org. Lett.  2007,  9:  3961 
  • 3b Nemoto T. Fukuyama T. Yamamoto E. Tamura S. Fukuda T. Matsumoto T. Akimoto Y. Hamada Y. Org. Lett.  2007,  9:  927 
  • 3c Cui HL. Feng X. Peng J. Lei J. Jiang K. Chen Y.-C. Angew. Chem. Int. Ed.  2009,  48:  5737 ; Angew. Chem. 2009, 121, 5847
  • 4a Navarre L. Darses S. Genet JP. Chem. Commun.  2004,  1108 
  • 4b Kabalka GW. Venkataiah B. Dong G. Org. Lett.  2003,  5:  3803 
  • 4c Gowrisankar S. Kim SH. Kim JN. Bull. Korean Chem. Soc.  2009,  30:  726 
  • 4d Alcaide B. Almendros P. del Campo TM. Quiros MT. Chem. Eur. J.  2009,  15:  3344 
  • Selected recent examples:
  • 5a Kataoka T. Kinoshita H. Kinoshita S. Iwamura T. Watanabe S. Angew. Chem. Int. Ed.  2000,  39:  2358 ; Angew. Chem. 2000, 112, 2448
  • 5b Trost BM. Oi S. J. Am. Chem. Soc.  2001,  123:  1230 
  • 5c Ramachandran P. Rudd MT. Burghardt TE. Reddy MVR. J. Org. Chem.  2003,  68:  9310 
  • 5d Xue S. He L. Han K.-Z. Liu Y.-K. Guo Q.-X. Synlett  2005,  1247 
  • 5e Xue S. He L. Han K.-Z. Liu Y.-K. Guo Q.-X. Synthesis  2006,  666 
  • 5f Yoshizawa K. Shioiri T. Tetrahedron Lett.  2006,  47:  757 
  • 5g Reynolds TE. Bharadwaj AR. Scheidt KA. J. Am. Chem. Soc.  2006,  128:  15382 
  • 5h Reynolds TE. Scheidt KA. Angew. Chem. Int. Ed.  2007,  46:  7806 ; Angew. Chem. 2007, 119, 7952
  • 5i Yoshizawa K. Shioiri T. Tetrahedron  2007,  63:  6259 
  • 5j Tarsis E. Gromova A. Lim D. Zhou G. Guoqiang C. Coltart DM. Org. Lett.  2008,  10:  4819 
  • 5k Mueller AJ. Jennings MP. Org. Lett.  2008,  10:  1649 
  • 5l Wadhwa K. Chintareddy VR. Verkade JG. J. Org. Chem.  2009,  74:  6681 
  • 6 Senapati BK. Hwang G.-S. Lee S. Ryu DH. Angew. Chem.  2009,  121:  4462 
  • Reviews on hydrometallations:
  • 7a Smith ND. Mancuso J. Lautens M. Chem. Rev.  2000,  100:  3257 
  • 7b Trost BM. Ball ZT. Synthesis  2005,  853 
  • 8a Kabalka GW. Yu S. Li N.-S. Lipprandt U. Tetrahedron Lett.  1999,  40:  37 
  • 8b Yu S. Li N.-S. Kabalka GW. J. Org. Chem.  1999,  64:  5822 
  • 9a Zhang HX. Guibe F. Balavoine G. J. Org. Chem.  1990,  55:  1857 
  • 9b Trost BM. Li CJ. Synthesis  1994,  1267 
  • 10a Rossi R. Carpita A. Cossi P. Tetrahedron Lett.  1992,  33:  4495 
  • 10b Rossi R. Carpita A. Cossi P. Synth. Commun.  1993,  23:  143 
  • 10c Sai H. Ogiku T. Nishitani T. Hiramatsu H. Horikawa H. Iwasaki T. Synthesis  1995,  582 
  • 11a Cochran JC. Bronk BS. Terrence KM. Phillips HK. Tetrahedron Lett.  1990,  31:  6621 
  • 11b Bellina F. Carpita A. Ciucci D. de Santis M. Rossi R. Tetrahedron  1993,  49:  4677 
  • 12a Dodero VI. Koll LC. Mandolesi SD. Podesta JC. J. Organomet. Chem.  2002,  650:  173 
  • 12b Dodero VI. Koll LC. Faraoni MB. Mitchell TN. Podesta JC. J. Org. Chem.  2003,  68:  10087 
  • 13a Kazmaier U. Klein M. Chem. Commun.  2005,  501 
  • 13b Deska J. Kazmaier U. Angew. Chem. Int. Ed.  2007,  46:  4570 ; Angew. Chem. 2007, 119, 4654
  • 13c Kazmaier U. Dörrenbächer S. Wesquet A. Lucas S. Kummeter M. Synthesis  2007,  320 
  • 13d Wesquet AO. Kazmaier U. Angew. Chem. Int. Ed.  2008,  47:  3050 ; Angew. Chem. 2008, 120, 3093
  • 14 Kazmaier U. Braune S. J. Organomet. Chem.  2002,  641:  26 
  • 15a Kazmaier U. Schauß D. Pohlman M. Org. Lett.  1999,  1:  1017 
  • 15b Kazmaier U. Pohlman M. Schauß D. Eur. J. Org. Chem.  2000,  2761 
  • 15c Braune S. Pohlman M. Kazmaier U. J. Org. Chem.  2004,  69:  468 
  • 15d Wesquet AO. Dörrenbächer S. Kazmaier U. Synlett  2006,  1105 
  • 16a Kazmaier U. Schauß D. Pohlman M. Raddatz S. Synthesis  2000,  914 
  • 16b Kazmaier U. Schauß D. Raddatz S. Pohlman M. Chem. Eur. J.  2001,  7:  456 
  • 16c Kazmaier U. Wesquet AO. Synlett  2005,  8:  1271 
  • 16d Jena N. Kazmaier U. Eur. J. Org. Chem.  2008,  3852 
  • 17a Lin H. Kazmaier U. Eur. J. Org. Chem.  2009,  1221 
  • 17b Wesquet AO. Kazmaier U. Adv. Synth. Catal.  2009,  1395 
  • 19 Leonard WR. Livinghouse T. J. Org. Chem.  1985,  50:  730 
18

General Procedure for One-Pot Hydrostannation-Aldol Additions The acetylenic ketone (1.0 mmol), hydroquinone (10 mol%), and Mo(CO)3 (CNt-Bu)3 (MoBI3) (3 mol%) were dissolved in THF (3 mL) in a Schlenk tube under N2. Then Bu3SnH (1.2 mmol) and the corresponding aldehyde (1.2 mmol) were added, the flask was evacuated and flushed with CO. The mixture was warmed to 60 ˚C for 6 h. After cooling to r.t., the solvent was removed in vacuo, and the reaction mixture was subjected to column chromatography (silica, EtOAc-hexanes).

20

Analytical Data of Selected ProductsAldol Product 4a ¹H NMR (400 MHz, CDCl3): δ = 7.73 (dd, J = 8.4, 1.6 Hz, 2 H), 7.50 (tt, J = 7.6, 1.6 Hz, 1 H), 7.40-7.34 (m, 4 H), 7.32-7.26 (m, 2 H), 7.23-7.19 (m, 1 H), 5.91 (td, J = 7.6, 1.2 Hz, 1 H), 5.55 (s, 1 H), 3.24 (br s, 1 H, OH), 1.79 (q, J = 7.6 Hz, 2 H), 1.31 (sext, J = 7.6 Hz, 2 H), 0.75 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 200.1, 141.5, 141.4, 137.7, 134.7, 133.3, 129.2, 128.4, 128.3, 127.6, 126.3, 76.5, 31.7, 22.2, 13.5 ppm. HRMS (CI): m/z calcd for C19H20O2 [M]+: 280.1463; found: 280.1461.
Aldol Product ( Z )-6a ¹H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 8.4 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 7.25-7.03 (m, 3 H), 7.06 (dd, J = 8.4, 1.6 Hz, 2 H), 5.92 (t, J = 7.6 Hz, 1 H), 5.42 (s, 1 H), 3.27 (br s, 1 H, OH), 2.90-2.70 (m, 4 H), 2.18 (q, J = 7.6 Hz, 2 H), 1.45 (sext, J = 7.6 Hz, 2 H), 0.91 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 203.0, 150.6, 147.0, 146.9, 140.6, 140.5, 128.5, 128.3, 126.2, 126.0, 123.5, 69.8, 39.5, 30.8, 30.1, 22.0, 14.0 ppm.
Aldol Product ( E )-6a ¹H NMR (400 MHz, CDCl3): δ = 8.14 (d, J = 8.8 Hz, 2 H), 7.47 (d, J = 8.8 Hz, 2 H), 7.29-7.18 (m, 3 H), 7.11 (dd, J = 8.4, 1.6 Hz, 2 H), 6.87 (t, J = 7.6 Hz, 1 H), 5.69 (s, 1 H), 3.08-2.91 (m, 2 H), 2.85 (t, J = 7.6 Hz, 2 H), 2.43 (sext, J = 7.6 Hz, 1 H), 2.34 (sext, J = 7.6 Hz, 1 H), 1.56 (sext d, J = 7.6, 2.0 Hz, 2 H), 1.00 (t, J = 7.6 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 203.0, 150.6, 147.0, 146.9, 140.6, 140.5, 128.5, 128.3, 126.3, 126.0, 123.5, 69.9, 39.5, 30.8, 30.1, 22.0, 14.0 ppm. HRMS (CI): m/z calcd for C21H23NO4 [M]+: 353.1627; found: 353.1647.