Synlett 2010(2): 325-328  
DOI: 10.1055/s-0029-1219170
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Allylic Substitution of 4-Cyclopentene-1,3-diol Monoacetate with Copper Reagents Derived from Functionalized Aryl Grignard Reagents

Yuichi Kobayashi*, Yukio Tani, Kenya Nakata, Yuki Kaneko
Department of Biomolecular Engineering, Tokyo Institute of Technology, B52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
Fax: +81(45)9245789; e-Mail: ykobayas@bio.titech.ac.jp;
Further Information

Publication History

Received 6 October 2009
Publication Date:
04 January 2010 (online)

Abstract

Grignard reagents derived from IC6H4R (R = CO2Et, CN, CH2OAc, CH2OPiv, I) and i-PrMgCl were subjected to CuCN-catalyzed allylic substitution of the monoacetate at 0 ˚C for one hour to furnish the anti-SN2′ products regio- and stereoselectively. The ester group at the ortho-position did not affect the substitution.

    References and Notes

  • 1a Nakata K. Kiyotsuka Y. Kitazume T. Kobayashi Y. Org. Lett.  2008,  10:  1345 
  • 1b Acharya HP. Miyoshi K. Kobayashi Y. Org. Lett.  2007,  9:  3535 
  • 1c Nakata K. Kobayashi Y. Org. Lett.  2005,  7:  1319 
  • 1d Kobayashi Y. Nakata K. Ainai T. Org. Lett.  2005,  7:  183 
  • 1e Ainai T. Ito M. Kobayashi Y. Tetrahedron Lett.  2003,  44:  3983 
  • 1f Kobayashi Y. Curr. Org. Chem.  2003,  7:  133 
  • 1g Matsuumi M. Ito M. Kobayashi Y. Synlett  2002,  1508 
  • 1h Ito M. Matsuumi M. Murugesh MG. Kobayashi Y. J. Org. Chem.  2001,  66:  5881 
  • 2 Hattori H. Abbas AA. Kobayashi Y. Chem. Commun.  2004,  884 
  • 3 Kobayashi Y. Murugesh MG. Nakano M. Takahisa E. Usmani SB. Ainai T. J. Org. Chem.  2002,  67:  7110 
  • 4a Sugai T. Mori K. Synthesis  1988,  19 
  • 4b Laumen K. Schneider M. Tetrahedron Lett.  1984,  25:  5875 
  • 4c Wang Y.-F. Chen C.-S. Girdaukas G. Sih CJ. J. Am. Chem. Soc.  1984,  106:  3695 
  • 5 Prostaglandins, see: Acharya HP. Kobayashi Y. Tetrahedron  2006,  62:  3329 
  • Isoprostanes, see:
  • 6a Acharya HP. Kobayashi Y. Tetrahedron Lett.  2005,  46:  8435 
  • 6b Acharya HP. Kobayashi Y. Angew. Chem. Int. Ed.  2005,  44:  3481 
  • Linolenic metabolites, see:
  • 7a Ogawa N. Kobayashi Y. Tetrahedron Lett.  2008,  49:  7124 
  • 7b Nonaka H. Wang Y.-G. Kobayashi Y. Tetrahedron Lett.  2007,  48:  1745 
  • 7c Yagi K. Nonaka H. Acharya HP. Furukawa K. Ainai T. Kobayashi Y. Tetrahedron  2006,  62:  4933 
  • 7d Kobayashi Y. Yagi K. Ainai T. Synlett  2004,  2582 
  • 7e Ainai T. Matsuumi M. Kobayashi Y. J. Org. Chem.  2003,  68:  7825 
  • Others:
  • 8a Hyodo T. Kiyotsuka Y. Kobayashi Y. Org. Lett.  2009,  11:  1103 
  • 8b Isemori Y. Kobayashi Y. Synlett  2004,  1941 
  • 8c Tokoro Y. Kobayashi Y. Chem. Commun.  1999,  807 
  • 8d Kobayashi Y. Watatani K. Kikori Y. Mizojiri R. Tetrahedron Lett.  1996,  37:  6125 
  • Quinine and quinidine, see:
  • 9a Igarashi J. Kobayashi Y. Tetrahedron Lett.  2005,  46:  6381 
  • 9b Igarashi J. Ishiwata H. Kobayashi Y. Tetrahedron Lett.  2004,  45:  8065 
  • 9c Igarashi J. Katsukawa M. Wang Y.-G. Acharya HP. Kobayashi Y. Tetrahedron Lett.  2004,  45:  3783 
  • 10a Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed.  2003,  42:  4302 
  • 10b Varchi G. Ricci A. Cahiez G. Knochel P. Tetrahedron  2000,  56:  2727 
  • 10c Sapountzis I. Lin W. Kofink CC. Despotopoulou C. Knochel P. Angew. Chem. Int. Ed.  2005,  44:  1654 
11

The ¹H NMR spectra of 2a and 3a were consistent with those synthesized previously by us.³

12

The spectral data of the products. Signs accompanying the chemical shifts of carbons indicate the results of APT experiments [Attached Proton Test: + (for C and CH2) and - (for CH and CH3)]. 2b: IR (neat): 3406, 1715, 1279, 1104, 1023 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.38 (t, J = 7 Hz, 3 H), 1.70 (br s, 1 H), 2.09 (ddd, J = 14, 7, 6 Hz, 1 H), 2.31 (ddd, J = 14, 8, 2.5 Hz, 1 H), 4.16-4.24 (m, 1 H), 4.36 (q, J = 7 Hz, 2 H), 5.03-5.10 (m, 1 H), 6.04 (dd, J = 6, 2 Hz, 1 H), 6.08 (dt, J = 6, 2 Hz, 1 H), 7.19 (d, J = 8 Hz, 1 H), 7.96 (d, J = 8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 14.4
(-), 44.0 (+), 50.0 (-), 60.9 (+), 77.4 (-), 127.1 (-), 128.8
(+), 130.0 (-), 134.8 (-), 138.4 (-), 150.2 (+), 166.6 (+). 3b: ¹H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7 Hz, 3 H), 2.02 (br s, 1 H), 2.40 (dm, J = 17 Hz, 1 H), 2.82 (ddq, J = 17, 7, 2 Hz, 1 H), 3.81-3.86 (m, 1 H), 4.28 (dt, J = 7, 4 Hz, 1 H), 4.36 (q, J = 7 Hz, 2 H), 5.77 (dq, J = 6, 2.5 Hz, 1 H), 5.94 (dq, J = 6, 2 Hz, 1 H), 7.25 (d, J = 8 Hz, 1 H), 7.98 (d, J = 8 Hz, 1 H). 2c: IR (neat): 3410, 1718, 1285 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7 Hz, 3 H), 2.09 (ddd, J = 14, 7, 5 Hz, 1 H), 2.24 (br s, 1 H), 2.32 (ddd, J = 14, 8, 2.5 Hz, 1 H), 4.17-4.25 (m, 1 H), 4.37 (q, J = 7 Hz, 2 H), 5.04-5.11 (m, 1 H), 6.03 (dd, J = 5.5, 2 Hz, 1 H), 6.07 (dd, J = 5.5, 1.5 Hz, 1 H), 7.27-7.39 (m, 2 H), 7.81 (s, 1 H), 7.88 (d, J = 7 Hz, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 14.3 (-), 43.9 (+), 49.8 (-), 61.0 (+), 77.2 (-), 127.6 (-), 128.2 (+), 128.6 (-), 130.7 (+), 131.6 (-), 134.7 (-), 138.4 (-), 145.2 (-), 166.7 (+). 3c: ¹H NMR (300 MHz, CDCl3): δ = 1.40 (t, J = 7 Hz, 3 H), 1.94 (br s, 1 H), 2.40 (d of sext, J = 17, 2 Hz, 1 H), 2.83 (ddq, J = 17, 7, 2 Hz, 1 H), 3.81-3.86 (m, 1 H), 4.30 (dq, J = 7, 4 Hz, 1 H), 4.37 (q, J = 7 Hz, 2 H), 5.78 (dq, J = 6, 2 Hz, 1 H), 5.94 (dq, J = 6, 2 Hz, 1 H), 7.36-7.40 (m, 2 H), 7.87 (s, 1 H), 7.89-7.94 (m, 1 H). 2d: IR (neat): 3389, 1716, 1269, 755 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7 Hz, 3 H), 2.04 (ddd, J = 14, 7, 6 Hz, 1 H), 2.19 (br s, 1 H), 2.42 (ddd, J = 14, 8, 2.5 Hz, 1 H), 4.37 (q, J = 7 Hz, 2 H), 4.87-4.95 (m, 1 H), 4.97-5.05 (m, 1 H), 6.01 (dd, J = 5.5, 1.5 Hz, 1 H), 6.06 (dt, J = 5.5, 2 Hz, 1 H), 7.15 (d, J = 7.5 Hz, 1 H), 7.24 (t, J = 7.5 Hz, 1 H), 7.40 (t, J = 7.5 Hz, 1 H), 7.81 (d, J = 7.5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 14.3 (-), 44.1 (+), 46.6 (-), 61.1 (+), 77.3 (-), 126.1 (-), 127.0 (-), 130.1 (-), 130.2 (+), 132.0 (-), 134.7 (+), 138.5 (-), 145.9 (-), 168.0 (+). 3d: ¹H NMR (300 MHz, CDCl3): δ = 1.42 (t, J = 7 Hz, 3 H), 2.43 (dm, J = 17 Hz, 1 H), 2.76 (ddq, J = 17, 7, 2 Hz, 1 H), 4.01 (br s, 1 H), 4.18-4.25 (m, 1 H), 4.32-4.37 (m, 1 H), 4.40 (q, J = 7 Hz, 2 H), 5.68 (dq, J = 6, 2 Hz, 1 H), 6.01 (dq, J = 6, 2 Hz, 1 H), 7.22 (d, J = 7.5 Hz, 1 H), 7.29 (t, J = 7.5 Hz, 1 H), 7.45 (t, J = 7.5 Hz, 1 H), 7.92 (d, J = 7.5 Hz, 1 H). 2e: IR (neat): 3303, 2227, 1606, 1026 cm; ¹H NMR (300 MHz, CDCl3): δ = 2.00-2.11 (m, 1 H), 2.22 (br s, 1 H), 2.32 (ddd, J = 14, 8, 3 Hz, 1 H), 4.17-4.25 (m, 1 H), 5.03-5.10 (m, 1 H), 6.01 (dm, J = 6 Hz, 1 H), 6.10 (dt, J = 6, 2 Hz, 1 H), 7.24 (d, J = 8.5 Hz, 2 H), 7.58 (t, J = 8.5 Hz, 2 H); ¹³C NMR (75 MHz, CDCl3): δ = 43.7 (+), 50.0 (-), 77.0 (-), 110.1 (+), 119.0 (+), 127.9 (-), 132.4 (-), 135.4 (-), 137.4 (+), 150.6 (+). 3e: ¹H NMR (300 MHz, CDCl3): δ = 1.92 (br s, 1 H), 2.42 (d of sext., J = 17, 2 Hz, 1 H), 2.82 (dddt, J = 17, 7, 1.8, 2.1 Hz, 1 H), 3.81-3.87 (m, 1 H), 4.21-4.31 (m, 1 H), 5.75 (dq, J = 6, 2 Hz, 1 H), 5.97 (dq, J = 6, 2.5 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 2 H), 7.60 (t, J = 8.5 Hz, 2 H). 2f: IR (neat): 3371, 2229, 1028 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.98 (br s, 1 H), 2.05 (ddd, J = 14, 7, 6 Hz, 1 H), 2.32 (ddd, J = 14, 8, 3 Hz, 1 H), 4.14-4.23 (m, 1 H), 5.03-5.11 (m, 1 H), 6.00 (dm, J = 5.5 Hz, 1 H), 6.11 (dt, J = 5.5, 2 Hz, 1 H), 7.35-7.53 (m, 4 H); ¹³C NMR (75 MHz, CDCl3): δ = 43.9 (+), 49.6 (-), 77.1 (-), 112.6 (+), 119.0 (+), 129.4
(-), 130.2 (-), 130.7 (-), 131.8 (-), 135.4 (-), 137.6 (+), 146.4 (+). 3f: ¹H NMR (300 MHz, CDCl3): δ = 1.91 (br s, 1 H), 2.41 (d of sext., J = 17, 2 Hz, 1 H), 2.83 (ddm, J = 17, 7 Hz, 1 H), 3.79-3.84 (m, 1 H), 4.21-4.30 (m, 1 H), 5.75 (dq, J = 6, 2 Hz, 1 H), 5.97 (dq, J = 6, 2 Hz, 1 H), 7.38-7.56 (m, 4 H). TBS ether of 2g: IR (neat): 1742, 1227, 1051, 836
cm; ¹H NMR (300 MHz, CDCl3): δ = 0.09 (s, 6 H), 0.91 (s, 9 H), 2.00-2.13 (m, 1 H), 2.09 (s, 3 H), 2.23 (ddd, J = 14, 8, 3.5 Hz, 1 H), 4.09-4.17 (m, 1 H), 5.07 (s, 2 H), 5.05-5.10 (m, 1 H), 5.89-5.97 (m, 2 H), 7.13 (d, J = 8 Hz, 2 H), 7.28 (d, J = 8 Hz, 2 H); ¹³C NMR (75 MHz, CDCl3): δ = -4.5 (-), 18.4 (+), 21.1 (-), 26.0 (-), 44.2 (+), 49.9 (-), 66.2 (+), 77.8 (-), 127.4 (-), 128.7 (-), 133.8 (-), 134.8 (+), 137.3 (-), 146.7 (+), 171.0 (+). 2h: IR (neat): 3374, 1729, 1282, 1151 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.22 (s, 9 H), 1.60 (br s, 1 H), 2.09 (ddd, J = 14, 7, 5 Hz, 1 H), 2.29 (ddd, J = 14, 9, 3 Hz, 1 H), 4.12-4.19 (m, 1 H), 5.03-5.08 (m, 1 H), 5.07 (s, 2 H), 6.04 (s, 2 H), 7.12 (d, J = 8 Hz, 2 H), 7.26 (d, J = 8 Hz, 2 H); ¹³C NMR (75 MHz, CDCl3): δ = 27.2 (-), 38.8 (+), 44.0 (+), 49.7 (-), 65.9 (+), 77.4 (-), 127.2 (-), 128.0 (-), 134.2
(-), 134.5 (+), 138.8 (-), 144.7 (+), 178.5 (+). 3h: ¹H NMR (300 MHz, CDCl3): δ = 1.22 (s, 9 H), 1.84 (br s, 1 H), 2.38 (d of sext, J = 17, 2 Hz, 1 H), 2.81 (ddm, J = 17, 7 Hz, 1 H), 3.74-3.80 (m, 1 H), 4.24-4.32 (m, 1 H), 5.08 (s, 2 H), 5.77 (dq, J = 6, 2 Hz, 1 H), 5.91 (dq, J = 6, 2 Hz, 1 H), 7.18 (d, J = 8 Hz, 2 H), 7.28 (d, J = 8 Hz, 2 H).

13

The stereoisomer 5b was synthesized from 2b in 88% yield by using the Mitsunobu inversion (AcOH, PPh3, DIAD, toluene, -78 ˚C, 5 h) followed by transesterification of the resulting ester with EtOH [NaH (1.4 equiv), EtOH, 0 ˚C, 4 h]. The cis-configuration of the substituents on the cyclo-pentane ring was determined by the large difference in the chemical shifts between the two hydrogens of the methylene unit (Δδ = 1.3 ppm; cf. Δδ of 2b = 0.2 ppm). The ¹H NMR of 5b (300 MHz, CDCl3): δ = 1.39 (t, J = 7 Hz, 3 H), 1.53-1.73 (m, 2 H), 2.88 (ddd, J = 16, 8.5, 7.5 Hz, 1 H), 3.85 (tm, J = 6 Hz, 1 H), 4.37 (q, J = 7 Hz, 2 H), 4.90-5.03 (m, 1 H), 5.95 (ddd, J = 5.5, 2, 1.5 Hz, 1 H), 6.02 (dt, J = 5.5, 2 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 1 H), 7.99 (d, J = 8.5 Hz, 1 H).

14

To a solution of iodobenzoate 4b (0.15 mL, 0.902 mmol) in THF (2.5 mL) was added i-PrMgCl (1.41 mL, 0.70 M in THF, 0.987 mmol) at -30 ˚C, dropwise. The solution was stirred at -30 ˚C for 15 min, then CuCN (8.1 mg, 0.090 mmol) was added. After 20 min at 0 ˚C a solution of the racemic monoacetate 1 (42.5 mg, 0.299 mmol) in THF (1.5 mL) was added. The reaction mixture was stirred at 0 ˚C for 1 h and diluted with saturated NH4Cl. The resulting mixture was extracted with EtOAc (3×) to afford 3b (62.5 mg) in 90% yield.