Abstract
A general method for synthesizing bifunctional hydroxamic acids
containing carboxylic acid or amino functionalities is reported.
Various products from simple alkyl to complex dendrimer-like structures
are described. Such molecules have recently been used in ligand-exchange
reactions for the hydrophilic stabilization of originally oleic
acid protected iron oxide nanoparticles.
Key words
protecting groups - hydroxamic acids - hydrogenation - ethers - alkylations
References
<A NAME="RT15909SS-1">1 </A>
Reddy AS.
Kumar MS.
Reddy GR.
Tetrahedron
Lett.
2000,
41:
6285
<A NAME="RT15909SS-2">2 </A>
Kurzak B.
Kozlowski H.
Farkas E.
Coord.
Chem. Rev.
1992,
114:
169
<A NAME="RT15909SS-3">3 </A>
Folkers JP.
Gorman CB.
Laibinis PE.
Buchholz S.
Whitesides GM.
Langmuir
1995,
11:
813
<A NAME="RT15909SS-4">4 </A> As an example the complex formation
constant for acetohydroxamate with Fe(III) in aqueous solution is
2.6 × 10¹¹ mol-¹ .
The corresponding value for acetate is only 2.4 × 10³ mol-¹ :
Woo K.
Lee HJ.
Ahn JP.
Park YS.
Adv. Mater.
2003,
15:
1761
<A NAME="RT15909SS-5">5 </A>
Emery T.
Iron
and Your Health: Facts and Fallacies
CRC;
Boca
Raton / FL:
1991.
p.15-17
<A NAME="RT15909SS-6">6 </A>
Kim M.
Chen Y.
Liu Y.
Peng X.
Adv.
Mater.
2005,
17:
1429
<A NAME="RT15909SS-7">7 </A>
Park J.
An K.
Hwang Y.
Park J.-G.
Noh H.-J.
Kim
J.-Y.
Park J.-H.
Hwang N.-M.
Hyeon T.
Nature Mater.
2004,
3:
891
<A NAME="RT15909SS-8">8 </A>
Jordan A.
Maier-Hauff K.
Wust P.
Johannsen M. In Nanomaterials
for Cancer Therapy
Challa K.
Wiley-VCH;
Weinheim:
2006.
p.242-258
<A NAME="RT15909SS-9">9 </A>
Högemann D.
Basilion JP.
Weissleder R.
Radiologe
2001,
41:
16
<A NAME="RT15909SS-10">10 </A>
Jain TK.
Richey J.
Strand M.
Leslie-Pelecky DL.
Flask CA.
Labhasetwar V.
Biomaterials
2008,
29:
4012
<A NAME="RT15909SS-11">11 </A>
Hofmann, A.; Graf, C.; Semisch, A.;
Hartwig, A.; Rühl, E. manuscript in preparation.
<A NAME="RT15909SS-12">12 </A>
Liénard BMR.
Horsfall LE.
Galleni M.
Frère J.-M.
Schofield CJ.
Bioorg. Med. Chem.
Lett.
2007,
17:
964
<A NAME="RT15909SS-13">13 </A>
Bauer L.
Exner O.
Angew. Chem.
1974,
86:
419
<A NAME="RT15909SS-14">14 </A>
Nagaoka Y.
Maeda T.
Kawai Y.
Nakashima D.
Oikawa T.
Shimoke K.
Ikeuchi T.
Kuwajima H.
Uesato S.
Eur. J. Med.
Chem.
2006,
41:
697
<A NAME="RT15909SS-15">15 </A>
Guo W.
Li J.
Wang YA.
Peng X.
J. Am. Chem. Soc.
2003,
125:
3901
<A NAME="RT15909SS-16">16 </A>
Wang YA.
Li JJ.
Chen H.
Peng X.
J. Am. Chem. Soc.
2002,
124:
2293
<A NAME="RT15909SS-17">17 </A>
Niwa M.
Morikawa M.
Nabeta T.
Higashi N.
Macromolecules
2002,
35:
2769
<A NAME="RT15909SS-18">18 </A>
McKenna MD.
Barberá J.
Marcos M.
Serrano JL.
J. Am. Chem.
Soc.
2005,
127:
619
<A NAME="RT15909SS-19">19 </A>
Selve C.
Ravey J.-C.
Stebe M.-J.
El Moudjahid C.
Moumni EM.
Delpuech J.-J.
Tetrahedron
1991,
47:
411
<A NAME="RT15909SS-20">20 </A>
Ramsay SL.
Freeman C.
Grace PB.
Redmond JW.
MacLeod JK.
Carbohydrate Res.
2001,
333:
59
<A NAME="RT15909SS-21">21 </A>
McKenna M.
Barbera J.
Marcos M.
Serrano JL.
J. Am. Chem. Soc.
2005,
127:
619
<A NAME="RT15909SS-22">22 </A>
Zhu J.
Beugelmans R.
Bourdet S.
Chastanet J.
Roussi G.
J. Org. Chem.
1995,
60:
6389
<A NAME="RT15909SS-23">23 </A>
Koushik M.
Joyeeta S.
Arabinda C.
FEBS
Lett.
2005,
579:
1291
<A NAME="RT15909SS-24">24 </A>
Brouwer AJ.
Liskamp RMJ.
Eur. J.
Org. Chem.
2005,
487
<A NAME="RT15909SS-25">25 </A>
Brouwer AJ.
Mulders SJE.
Liskamp RMJ.
Eur. J. Org. Chem.
2001,
1903
<A NAME="RT15909SS-26">26 </A>
Freitas JM.
Abrantes LM.
Darbre T.
Helv.
Chim. Acta
2005,
88:
2470