Subscribe to RSS
DOI: 10.1055/s-0029-1218632
A Direct, Copper-Catalyzed Functionalization of Pyridines with Alkynes
Publication History
Publication Date:
04 January 2010 (online)

Abstract
A one-pot, copper-catalyzed method to construct 2-alkynylpyridines is presented. This provides a route to access these products directly from terminal alkynes and the parent pyridine, and without prefunctionalization of the pyridine core. In addition, (Z)-alk-2-enylpyridines can be prepared via a related procedure. These reactions are used to synthesize a number of new alkynyl- and alkenyl-substituted pyridines in one pot.
Key words
pyridine - copper - catalytic - alkyne - alkene
- Supporting Information for this article is available online:
- Supporting Information
- Selected examples:
- 1a
Nunez MJ.Guadano A.Jimenez IA.Ravelo AG.Gonzalez-Coloma A.Bazzocchi IL. J. Nat. Prod. 2004, 67: 14MissingFormLabel - 1b
Kitamura A.Tanaka J.Ohtani II.Higa T. Tetrahedron 1999, 55: 2487MissingFormLabel - 1c
O’Hagan D. Nat. Prod. Rep. 2000, 17: 435MissingFormLabel - 1d
Duan H.Takaishi Y.Momota H.Ohmoto Y.Taki T.Jia Y.Li D. J. Nat. Prod. 2001, 64: 582MissingFormLabel - 1e
Tsukamoto S.Takahashi M.Matsunaga S.Fusetami N.van Soet RWM. J. Nat. Prod. 2000, 63: 682MissingFormLabel - 1f
Chang F.-R.Hayashi K.-I.Chen I.-H.Liaw C.-C.Bastow KF.Nakanishi Y.Nozaki H.Cragg GM.Wu Y.-C.Lee KH. J. Nat. Prod. 2003, 66: 1416MissingFormLabel - 1g
Horiuch M.Murakami C.Fukami N.Yu D.Chen T.-H.Bastow KF.Zhang D.-C.Takaishi Y.Imakura Y.Lee K.-H. J. Nat. Prod. 2006, 69: 1271MissingFormLabel - Pyridines are used extensively as ligands, for reviews in this area, see:
- 2a
Dumur F.Dumas E.Mayer CR. Targ. Heterocycl. Syst. 2007, 11: 70MissingFormLabel - 2b
von Zelewsky A. Coord. Chem. Rev. 1999, 190-192: 811MissingFormLabel - 2c
van Koten G.Albrecht M. Angew. Chem. Int. Ed. 2001, 40: 3750MissingFormLabel - 2d
Belda O.Moberg C. Coord. Chem. Rev. 2005, 249: 727MissingFormLabel - 2e
Desimoni G.Faita G.Quadrelli P. Chem. Rev. 2003, 103: 3119MissingFormLabel - 2f
Chelucci G.Thummel R. Chem. Rev. 2002, 102: 3129MissingFormLabel - 3a
Shifrina ZB.Rajadurai MS.Firsova NV.Bronstein LM.Huang X.Rusanov AL.Muellen K. Macromolecules 2005, 38: 9920MissingFormLabel - 3b
Rauckhorst MR.Wilson PJ.Hatcher SA.Hada CM.Parquette JR. Tetrahedron 2003, 59: 3917MissingFormLabel - 4a
Zheng JY.Feng XM.Bai WB.Qin JG.Zhan CM. Eur. Polym. J. 2005, 41: 2770MissingFormLabel - 4b
duBois CJ.Abboud KA.Reynolds JR. J. Phys. Chem. B 2004, 108: 8550MissingFormLabel - 4c
Yamamoto T.Yamaguchi I.Yasuda T. Adv. Polym. Sci. 2005, 177: 181MissingFormLabel - 5a
Alagille D.Baldwin RM.Roth BL.Wroblewski JT.Grajkowska E.Tamagnan GD. Bioorg. Med. Chem. 2005, 13: 197MissingFormLabel - 5b
Yu M.Tueckmantel W.Wang X.Zhu A.Kozikowski AP.Brownell A.-L. Nucl. Med. Biol. 2005, 32: 631MissingFormLabel - 5c
Jakopec S.Dubravcic K.Polanc S.Kosmrlj J.Osmak M. Toxicol. in Vitro 2006, 20: 217MissingFormLabel - 5d
Jacguemard U.Routier S.Dias N.Lansiaux A.Goossens J.-F.Bailly C.Merour J.-Y. Eur. J. Med. Chem. 2005, 40: 1087MissingFormLabel - 5e
Zhou X.-F.Yang X.Wang Q.Coburn RA.Morris ME. Drug Metab. Dispos. 2005, 33: 1220MissingFormLabel - Recent reviews on the construction and functionalization of pyridines:
- 6a
Schlosser M.Mongin F. Chem. Soc. Rev. 2007, 36: 1161MissingFormLabel - 6b
Varela JA.Saa C. Synlett 2008, 2571MissingFormLabel - 6c
Henry G. Tetrahedron 2004, 60: 6043MissingFormLabel - Selected recent examples of new methods:
- 7a
Dash J.Lechel T.Reissig H.-U. Org. Lett. 2007, 9: 5541MissingFormLabel - 7b
Sasada T.Sakai N.Korakahara T. J. Org. Chem. 2008, 73: 6905MissingFormLabel - 7c
Eidamshaus C.Reissig H.-U. Adv. Synth. Catal. 2009, 351: 1162MissingFormLabel - 7d
Kobayashi T.Hatano S.Tsuchikawa H.Katsumura S. Tetrahedron Lett. 2008, 49: 4349MissingFormLabel - 7e
Kiss LE.Ferreira HS.Learmonth DA. Org. Lett. 2008, 10: 1835MissingFormLabel - 7f
Donohoe TJ.Fishlock LP.Procopiou PA. Synthesis 2008, 2665MissingFormLabel - 8a A
review:
Schröter S.Stock C.Bach T. Tetrahedron 2005, 61: 2245MissingFormLabel - 8b
Blachut D.Czarnocki Z.Wojtasiewicz K. Synthesis 2006, 2855MissingFormLabel - 8c
Cailly T.Fabis F.Bouillon A.Lemaitre S.Sopkova de Oliveira Santos J.Rault S. Synlett 2006, 53MissingFormLabel - 8d
Couve-Bonnaire S.Carpentier J.-F.Mortreux A.Castanet Y. Tetrahedron 2003, 59: 2793MissingFormLabel - 9a
Joubert N.Pohl R.Klepetarova B.Hocek M. J. Org. Chem. 2007, 72: 6797MissingFormLabel - 9b
Mei K.Wang J.Hu X. Synth. Commun. 2006, 36: 2525MissingFormLabel - 9c
Masselot D.Charmant JPH.Gallagher T. J. Am.Chem. Soc. 2006, 128: 694MissingFormLabel - 9d
Lachance N.April M.Joly M.-A. Synthesis 2005, 2571MissingFormLabel - 9e
Zhao J.Yang X.Jia X.Luo S.Zhai H. Tetrahedron 2003, 59: 9379MissingFormLabel - 10a
Lechel T.Dash J.Brudgam I.Reibig H.-U. Eur. J. Org. Chem. 2008, 3647MissingFormLabel - 10b
Krauss J.Bracher F. Arch. Pharm. Pharm. Med. Chem. 2004, 337: 371MissingFormLabel - 10c
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2005, 46: 1717MissingFormLabel - 10d
Sonogashira K. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.-I. Wiley-Interscience; New York: 2002. p.493MissingFormLabel - 10e
Sonogashira K. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.203MissingFormLabel - 11a
Mudadu MS.Singh A.Thummel RP. J. Org. Chem. 2006, 71: 7611MissingFormLabel - 11b
Hervet M.Thery I.Gueiffier A.Enguehard-Gueffier C. Helv. Chim. Acta 2003, 86: 3461MissingFormLabel - 11c
Heller M.Schubert US. J. Org. Chem. 2002, 67: 8269MissingFormLabel - Pyridine and related aza-aromatic N-oxides in palladium catalyzed biaryl cross-couplings:
- 12a
Campeau L.-C.Rousseaux S.Fagnou K. J. Am. Chem. Soc. 2005, 127: 18020MissingFormLabel - 12b
Leclerc J.-P.Fagnou K. Angew. Chem. Int. Ed. 2006, 45: 7781MissingFormLabel - Examples of catalytic pyridine N-oxide CH functionalization:
- 13a
Cho SH.Hwang SJ.Chang S. J. Am. Chem. Soc. 2008, 130: 9254MissingFormLabel - 13b
Kanyiva KS.Nakao Y.Hiyama T. Angew. Chem. Int. Ed. 2007, 46: 8872MissingFormLabel - 14
Larivée A.Mousseau JJ.Charette AB. J. Am. Chem. Soc. 2008, 130: 52MissingFormLabel - Reviews on this topic:
- 15a
Eicher T.Hauptmann S. The Chemistry of Heterocycles Wiley-VCH; Weinheim: 2003.MissingFormLabel - 15b
Joule JA.Mills K. Heterocyclic Chemistry Blackwell Science; Oxford: 2000.MissingFormLabel - 15c
Lavilla R. J. Chem. Soc., Perkin Trans. 1 2002, 1141MissingFormLabel - 15d
Meyers AI.Stout D. Chem. Rev. 1982, 82: 223MissingFormLabel - 15e
Eisner U.Kuthan J. Chem. Rev. 1972, 72: 1MissingFormLabel - 15f
Comins DL.O’Connor S. Adv. Heterocycl. Chem. 1988, 44: 199MissingFormLabel - 15g
Comins DL.Joseph S. Adv. Nitrogen Heterocycl. 1996, 2: 251MissingFormLabel - Specific examples:
- 16a
Lyle RE.Comins DL. J. Org. Chem. 1976, 41: 3250MissingFormLabel - 16b
Comins DL.Abdullah AH. J. Org. Chem. 1982, 47: 4315MissingFormLabel - 16c
Comins DL.Brown J. Tetrahedron Lett. 1984, 25: 3297MissingFormLabel - 17a
Black DA.Beveridge RE.Arndtsen BA. J. Org. Chem. 2008, 73: 1906MissingFormLabel - 17b
Black DA.Arndtsen BA. Org. Lett. 2004, 6: 1107MissingFormLabel - 18 Additional report of copper-catalyzed
enantioselective addition of activated terminal alkynes to N-acylpyridinium salts:
Sun Z.Yu S.Ding Z.Ma D. J. Am. Chem. Soc. 2007, 129: 9300 - Recent reports where the isolated N-acyl-2-alkynyl-1,2-dihydropyridine precursor was generated via in situ stoichiometric copper-acetylide formation:
- 19a
Yadav JS.Reddy BVS.Sreenivas M.Sathaiah K. Tetrahedron Lett. 2005, 46: 8905MissingFormLabel - 19b
Yamada S.Toshimitsu A.Takahashi Y. Tetrahedron 2009, 65: 2329MissingFormLabel - 20a
Davis JL.Dhawan R.Arndtsen BA. Angew. Chem. Int. Ed. 2004, 43: 590MissingFormLabel - 20b
Black DA.Arndtsen BA. Org. Lett. 2006, 8: 1991MissingFormLabel - 20c
Black DA.Arndtsen BA. J. Org. Chem. 2005, 70: 5133MissingFormLabel - Copper salts are known to mediate oxidative organic transformations, see:
- 21a
Schultz MJ.Sigman MS. Tetrahedron 2006, 62: 8227MissingFormLabel - 21b
Mukherjee R. Comp. Coord. Chem. II 2004, 6: 747MissingFormLabel - 21c
Puzari A.Baruah JB. J. Mol. Cat. A: Chem. 2002, 2: 149MissingFormLabel - 21d
Feringa B. Bioinorg. Chem. Copper 1993, 306MissingFormLabel - Base mediated aromatizations of dihydropyridines to pyridines are known:
- 23a
Fraenkel G.Cooper JW.Fink CM. Angew. Chem., Int. Ed. Engl. 1970, 9: 523MissingFormLabel - 23b
Corey EJ.Tian Y. Org. Lett. 2005, 7: 5535MissingFormLabel - 23c
Singh RP.Eggers GV.Shreeve JM. Synthesis 2002, 1009MissingFormLabel - 23d
See also ref. 15.
MissingFormLabel - 24a
Agaw a T.Miller SI. J. Am. Chem. Soc. 1961, 83: 449MissingFormLabel - 24b
Chen C.Wang B.Munoz B. Synlett 2003, 2404MissingFormLabel - References for known 2-alkynylpyridine compounds:
- 25a 2-Phenylethynylpyridine
(2):
Wang B.Bonin M.Micouin L. Org. Lett. 2004, 6: 3481MissingFormLabel - 25b See also:
Shirakawa E.Kitabata T.Otsuka H.Tsuchimoto T. Tetrahedron 2006, 61: 9878MissingFormLabel - 25c Table 3, entry 2:
Alagille D.Baldwin RM.Roth BL.Wroblewski JT.Grajkowska E.Tamagnon GD. Bioorg. Med. Chem. 2005, 13: 197MissingFormLabel - 25d Table 3, entry 1:
Tilley JW.Zawoiski S. J. Org. Chem. 1988, 53: 386MissingFormLabel - 25e Table 2, entry 4:
Sakamoto T.Shiga F.Yasuhara A.Uchiyama D.Kondo Y.Yamanaka H. Synthesis 1992, 746MissingFormLabel - 25f Table 3, entry 3 has not
been reported, however, the other o-phenylalkynyl
regioisomer has been reported:
Yue D.Larock RC. Org. Lett. 2004, 6: 1581MissingFormLabel - 25g See also:
Roesch KR.Larock RC. J. Org. Chem. 2002, 67: 86MissingFormLabel - 25h Table 2, entry 5:
Novak I.Ng S.-C.Mok C.-Y.Huang H.-H.Fang J.Wang KK.-T. J. Chem. Soc., Perkin Trans. 2 1994, 1771MissingFormLabel - References for known 2-alkenylpyridine compounds:
- 26a 2-phenylethenylpyridine
(3):
Chen C.Wang B.Munoz B. Synlett 2003, 2404MissingFormLabel - 26b Table 5, entry 2:
Heimgärtner G.Raatz D.Reiser O. Tetrahedron 2005, 61: 643MissingFormLabel - 26c Table 5, entry 3:
Ciutolini MA.Byrne NE. J. Chem. Soc., Chem. Commun. 1988, 1230MissingFormLabel
References
Minor amounts of the 2,5-substituted pyridine isomer are observed with the product in Table [³] , entry 2.
27The coupling constant J for trans-isomers is always larger (>10 Hz) than cis-isomers and is typically ∼15 Hz for E-alkenylpyridines (see ref. 25).