Synthesis 2010(5): 818-822  
DOI: 10.1055/s-0029-1218618
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Convenient Synthesis of meso-Cyclohexa-1,3-dienes by One-Pot Two-Step Deoxygenation of 7-Oxabicyclo[2.2.1]hept-2-enes

Tomotsugu Yano, Takashi Fujishima, Ryo Irie*
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Fax: +81(96)3423379; e-Mail: irie@sci.kumamoto-u.ac.jp;
Further Information

Publication History

Received 15 October 2009
Publication Date:
22 December 2009 (online)

Abstract

Iron(III) hydroxide oxide was found to be an efficient catalyst for the ring-opening reaction of 5,6-cis-disubstituted 7-oxa­bicyclo[2.2.1]hept-2-enes with acetyl bromide in dichloromethane at room temperature to give cyclohexene derivatives with leaving groups (acetoxy or bromo groups) disposed on each allylic position. A successive one-pot treatment of the reaction mixture with zinc powder and tetrahydrofuran successfully induced reductive 1,4-elimination to afford synthetically useful 5,6-disubstituted meso-cyclohexa-1,3-dienes in good-to-high yields.

    References

  • 1 Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley; New York: 2000. 
  • For selected reviews, see:
  • 2a Rovis T. In New Frontiers in Asymmetric Catalysis   Mikami K. Lautens M. Wiley; Hoboken: 2007.  p.275 
  • 2b Spivey AC. Andrews BI. Brown AD. Recent Res. Dev. Org. Chem.  2002,  6:  147 
  • 3 Takano S. Yoshimitsu T. Ogasawara K. J. Org. Chem.  1994,  59:  54 
  • 4 Arjona O. Gómez AM. López JC. Plumet J. Chem. Rev.  2007,  107:  1919 
  • 5 Staben ST. Xin L. Toste FD. J. Am. Chem. Soc.  2006,  128:  12658 
  • 6 Lautens M. Ma S. Belter RK. Chiu P. Leschziner A. J. Org. Chem.  1992,  57:  4065 
  • 7a Baran A. Kazaz C. Seçen H. Tetrahedron  2004,  60:  861 
  • 7b Baran A. Kazaz C. Seçen H. Sütbeyaz Y. Tetrahedron  2003,  59:  3643 
  • For reviews on reductive elimination of vicinal heteroatoms, see:
  • 8a Krebs A. Swienty-Busch J. Fleming I. In Comprehensive Organic Synthesis   Vol. 6:  Trost BM. Pergamon; Oxford: 1991.  Chap. 5.1.3.2.
  • 8b Ham P. Zinc-Acetic Acid, In Encyclopedia of Organic Reagents for Organic Synthesis   Vol. 8:  Paquette LA. Wiley; New York: 1995.  p.5531 
  • 9 Das J. Vu T. Harris DN. Ogletree ML. J. Med. Chem.  1988,  31:  930 
  • 10 Mitchell M. Qaio L. Wong C.-H. Adv. Synth. Catal.  2001,  343:  596 
  • 13 Ferritto R. Vogel P. Synlett  1996,  281 
  • 16 Takao K. Yasui H. Yamamoto S. Sasaki D. Kawasaki S. Watanabe G. Tadano K. J. Org. Chem.  2004,  69:  8789 
  • 17a Oishi T. Maruyama M. Shoji M. Maeda K. Kumahara N. Tanaka S.-I. Hirama M. Tetrahedron  1999,  55:  7471 
  • 17b Borthwick S. Dohle W. Hirst RP. Booker-Milburn IK. Tetrahedron Lett.  2006,  47:  7205 
  • 18 Millward DB. Sammis G. Waymouth RM. J. Org. Chem.  2000,  65:  3902 
11

The present ring-opening reaction is apparently nonstereospecific in contrast to those reported by Seçen, which are retentive and directed by a neighboring-group effect (see ref. 7).

12

Upon addition of AcBr to a yellow suspension of FeO(OH) in CH2Cl2, a dark-red homogeneous solution was obtained.

14

Water was not intentionally added, but the reductive elimination was carried out in open air so that the AcBr was probably hydrolyzed to AcOH.

15

In large-scale reactions, the second step of the present one-pot protocol should be performed at 0 ˚C because it is significantly exothermic.