Synlett 2009(20): 3323-3327  
DOI: 10.1055/s-0029-1218368
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Reusable Cu2O-Nanoparticle-Catalyzed Amidation of Aryl Iodides

Suribabu Jammi, Sankarganesh Krishnamoorthy, Prasenjit Saha, Dipti S. Kundu, Sekarpandi Sakthivel, Md Ashif Ali, Rajesh Paul, Tharmalingam Punniyamurthy*
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
Further Information

Publication History

Received 2 September 2009
Publication Date:
27 November 2009 (online)

Abstract

The amidation of aryl iodides using Cu2O nanoparticles is described. It is a heterogeneous process, no leaching of the Cu2O species occurs, and the catalyst can be recovered and recycled without loss of activity.

    References and Notes

  • 1a Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 1b Hartwig JF. Synlett  2006,  1283 
  • 1c Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 1d Corbet J.-P. Mignani G. Chem. Rev.  2006,  106:  2651 
  • 1e Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 1f Kondo T. Mitsudo T.-A. Chem. Rev.  2000,  100:  3205 
  • 2a Voets M. Antes I. Scherer C. Muller-Vieira U. Biemel K. Barassin C. Marchais-Oberwinkler S. Hartmann RW. J. Med. Chem.  2005,  48:  6632 
  • 2b Quan ML. Lam PYS. Han Q. Pinto DJP. He MY. Li R. Ellis CD. Clark CG. Teleha CA. Sun JH. Alexander RS. Bai S. Luettgen JM. Knabb RM. Wong PC. Wexler RR. J. Med. Chem.  2005,  48:  1729 
  • 2c De Martino G. Edler MC. La Regina G. Colsuccia A. Barbera MC. Barrow D. Nicholson RI. Chiosis G. Brancale A. Hamel E. Artico M. Silvestri R. J. Med. Chem.  2006,  49:  947 
  • 2d Kadlor SW. Kalish VJ. Davies JF. Shetty BV. Fritz JE. Appelt K. Burgess JA. Campanale KM. Chirgadze NY. Clawson DK. Dressman BA. Hatch SD. Khalil DA. Kosa MB. Lubbehusen PP. Muesing MA. Patick AK. Reich SH. Su KS. Tatlock JH. J. Med. Chem.  1997,  40:  3979 
  • 3 Goldberg I. Ber. Dtsch. Chem. Ges.  1906,  39:  1691 
  • For some examples, see:
  • 4a Yin J. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  6043 
  • 4b Huang X. Anderson KW. Zim D. Jiang L. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  6653 
  • 4c Shen Q. Hartwig JF. J. Am. Chem. Soc.  2007,  129:  7734 
  • 4d Ikawa T. Barder TE. Biscoe MR. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  13001 
  • 4e Yin J. Buchwald SL. Org. Lett.  2000,  2:  1101 
  • 4f Hartwig JF. Kawatsura M. Hauck SI. Shaughnessy KH. Alcazar-Roman LM.
    J. Org. Chem.  1999,  64:  5575 
  • 4g Ghosh A. Sieser JE. Riou M. Cai W. Rivera-Ruiz L. Org. Lett.  2003,  5:  2207 
  • 4h Manley PJ. Bilodeau MT. Org. Lett.  2004,  6:  2433 
  • 4i Shen Q. Shekhar S. Stambuli JP. Hartwig JF. Angew. Chem. Int. Ed.  2005,  44:  1371 
  • 4j Klapars A. Campos KR. Chen C.-Y. Volante RP. Org. Lett.  2005,  7:  1185 
  • For some examples, see:
  • 5a Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc.  2001,  123:  7727 
  • 5b Strieter ER. Blackmond DG. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4120 
  • 5c Pan X. Cai Q. Ma D. Org. Lett.  2004,  6:  1809 
  • 5d Klapars A. Huang X. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  7421 
  • 5e Mallesham B. Rajesh BM. Reddy PR. Srinivas D. Trehan S. Org. Lett.  2003,  5:  963 
  • 5f Hosseinzadeh R. Tajbakhsh M. Mohadjerani M. Mehdinejad H. Synlett  2004,  1517 
  • 5g Guo X. Rao H. Fu H. Jiang Y. Zhao Y. Adv. Synth. Catal.  2006,  348:  2197 
  • 5h Lv X. Bao W. J. Org. Chem.  2007,  72:  3863 
  • For some examples, see:
  • 6a Deng W. Wang Y.-F. Zou Y. Liu L. Guo Q.-X. Tetrahedron Lett.  2004,  45:  2311 
  • 6b Chen Y.-J. Chen H.-H. Org. Lett.  2006,  8:  5609 
  • 6c Soares do Rêgo Barros O. Nogueira CW. Stangherlin EC. Menezes PH. Zeni G. J. Org. Chem.  2006,  71:  1552 
  • 6d Cristau H.-J. Cellier PP. Spindler J.-F. Taillefer M. Chem. Eur. J.  2004,  10:  5607 
  • 6e Chandrasekhar S. Sultana SS. Yaragorla SR. Reddy NR. Synthesis  2006,  839 
  • 6f Moriwaki K. Satoh K. Takada M. Ishino Y. Ohno T. Tetrahedron Lett.  2005,  46:  7559 
  • 6g Strieter ER. Bhayana B. Buchwald SL.
    J. Am. Chem. Soc.  2009,  131:  78 
  • 6h Mino T. Harada Y. Shindo H. Sakamoto M. Fujita T. Synlett  2008,  614 
  • 6i Zhu L. Cheng L. Zhang Y. Xie R. You J. J. Org. Chem.  2007,  72:  2737 
  • For some examples, see:
  • 7a Rout L. Sen TK. Punniyamurthy T. Angew. Chem. Int. Ed.  2007,  46:  5583 
  • 7b Rout L. Jammi S. Punniyamurthy T. Org. Lett.  2007,  9:  3397 
  • 7c Jammi S. Sakthivel S. Rout L. Mukherjee T. Mandal S. Mitra R. Saha P. Punniyamurthy T.
    J. Org. Chem.  2009,  74:  1971 
  • 7d Zhang J. Zhang Z. Wang Y. Zheng X. Wang Z. Eur. J. Org. Chem.  2008,  5112 
  • 7e Li J.-H. Tang B.-X. Tao L.-M. Xie Y.-X. Liang Y. Zhang M.-B. J. Org. Chem.  2006,  71:  7488 
  • 7f Tang B.-X. Wang F. Li J.-H. Xie Y.-X. Zhang M.-B. J. Org. Chem.  2007,  72:  6294 
  • 8a Wu W.-T. Wang Y. Shi L. Pang W. Zhu Q. Xu G. Lu F. J. Phys. Chem. B  2006,  110:  14702 
  • 8b Gou L. Murphy CJ. Nano Lett.  2003,  3:  231 
  • 9a Liu L. Zhang Y. Wang Y. J. Org. Chem.  2005,  70:  6122 
  • 9b Reed NN. Dickerson TJ. Boldt GE. Janda KD. J. Org. Chem.  2005,  70:  1728 
  • 9c Chandrasekhar S. Narsihmulu Ch. Sultana SS. Reddy NR. Org. Lett.  2002,  4:  4399 
  • 9d Svennebring A. Garg N. Nilsson P. Hallberg A. Larhed M. J. Org. Chem.  2005,  70:  4720 
  • 9e Wang L. Zhang Y. Liu L. Wang Y. J. Org. Chem.  2006,  71:  1284 
10

General Procedure for Amidation of Aryl Iodides
Aryl iodide (1 mmol), amide (1.2 mmol), and CuI (10 mol%) were stirred at 120 ˚C in the presence of KOH (1 mmol) in PEG4000 (1 g) under N2 atmosphere. Progress of the reaction was monitored by TLC. After completion, the reaction flask was cooled to r.t., and the reaction mixture was treated with EtOAc (10 mL). The resulting solution was washed with H2O (3 × 2 mL). Drying (Na2SO4) and evaporation of the solvent gave a residue that was purified on a short pad of silica gel using hexane and EtOAc as eluent. All the isolated products were characterized by IR, ¹H NMR, and ¹³C NMR spectroscopy, and elemental analysis. Recyclability Experiment 1-Iodo-4-methylbenzene (5 mmol), benzamide (6 mmol), and CuI (10 mol%) were stirred at 120 ˚C in the presence of KOH (7.5 mmol) in PEG4000 (5 g) under N2 atmosphere. After the reaction, the reaction material was treated with EtOAc (10 mL) and H2O (5 mL). The aqueous layer having the Cu2O nanoparticles were centrifuged, and the precipitate was washed with deionized H2O (3 ¥ 2 mL) and acetone (3 ¥ 2 mL). After drying in vacuum, the Cu2O nanoparticles were reused for the fresh reaction of benzamide with 1-iodo-4-methylbenzene.