Synlett 2009(19): 3107-3110  
DOI: 10.1055/s-0029-1218362
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Gold-Facilitated ‘6-Exo-dig’ Intramolecular Cyclization of 2-[(2-Nitrophenyl)ethynyl]phenylacetic Acids: General Access to 5H-Benzo[b]carbazole-6,11-diones

Cristian O. Salasa, Francisco J. Reboredob, Juan C. Estévezb, Ricardo A. Tapiaa, Ramón J. Estévez*b
a Departamento de Química Orgánica, Facultad de Química, Pontifícia Universidad Católica de Chile, 782043 Santiago, Chile
b Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Fax: +34(981)591014; e-Mail: ramon.estevez@usc.es;
Further Information

Publication History

Received 13 August 2009
Publication Date:
13 November 2009 (online)

Abstract

The preliminary results of a regiospecific synthesis of (Z)-1-(2-nitrobenzylidene)isochroman-3-ones by gold(I)-catalyzed cycloisomerization of phenylethynylacetic acids under mild conditions is described. These novel lactones proved to be suitable starting materials for a new, general access to 5H-benzo[b]carbazole-6,11-diones.

    References and Notes

  • 1a Huang Q. Larock RC. Org. Lett.  2002,  4:  2505 
  • 1b Larock LC. Pure Appl. Chem.  1999,  71:  1435 
  • 2a Hiroya K. Suzuki N. Yasuhara A. Egawa Y. Kasano A. Sakamoto T. J. Chem. Soc., Perkin Trans. 1  2000,  4339 ; and references cited therein
  • 2b Zhang H. Larock RC. J. Org. Chem.  2002,  67:  9318 
  • 2c Kirsch G. Hesse S. Comel A. Curr. Org. Synth.  2004,  1:  47 
  • 2d Reboredo FJ. Treus M. Estévez JC. Castedo L. Estévez RJ. Synlett  2003,  1603 
  • 3 Larock RC. Yum EK. Refvick MD. J. Org. Chem.  1998,  63:  7652 
  • 4a Mehta S. Waldo JP. Larock RC. J. Org. Chem.  2009,  74:  1141 
  • 4b Le Bras G. Hamze A. Messaoudi S. Provot O. Le Calvez P.-B. Brion J.-D. Alami M. Synthesis  2008,  1607 
  • 4c Kim S. Yamamoto K. Hayashi K. Chiba K. Tetrahedron  2008,  64:  2855 
  • 4d Hellal M. Bourguignon J.-J. Bihel FJ.-J. Tetrahedron Lett.  2008,  49:  62 
  • 4e Marchal E. Uriac P. Legouin B. Toupet L. van de Weghe P. Tetrahedron  2007,  63:  9979 
  • 4f Kanazawa C. Terada M. Tetrahedron Lett.  2007,  48:  933 
  • 4g Uchiyama M. Ozawa H. Takuma K. Matsumoto Y. Yonehara M. Hiroya K. Sakamoto T. Org. Lett.  2006,  8:  5517 
  • 5a Baldwin JE. Thomas RC. Kruse LI. Silberman L. J. Org. Chem.  1977,  42:  3846 
  • 5b Johnson CD. Acc. Chem. Res.  1993,  26:  476 
  • 6a Reboredo FJ. Treus M. Estevez JC. Castedo L. Estevez RJ. Synlett  2002,  999 
  • 6b Uchiyama M. Ozawa H. Takuma K. Matsumoto Y. Yonehara M. Hiroya K. Sakamoto T. Org. Lett.  2006,  24:  5517 
  • 6c Marchal E. Uriac P. Legouin B. Toupet L. van de Weghe P. Tetrahedron  2007,  63:  9979 
  • 6d Brady MGA. Kariuki B. Knight DW. Mohammed FK. Tetrahedron Lett.  2009,  50:  1385 
  • 7 Yu Y. Stephenson A. Mitchell D. Tetrahedron Lett.  2006,  47:  3811 
  • For our contributions on these targets, see:
  • 8a Fernandez M. Barcia C. Estevez JC. Estevez RJ. Castedo L. Synlett  2004,  267 
  • 8b Barcia JC. Cruces J. Estevez JC. Estevez RJ. Castedo L. Tetrahedron Lett.  2002,  43:  5141 
  • 8c Cruces J. Martinez E. Treus M. Martinez LA. Estevez JC. Estevez RJ. Castedo L. Tetrahedron  2002,  58:  3015 
  • 8d Cruces J. Estevez JC. Castedo L. Estevez RJ. Tetrahedron Lett.  2001,  42:  4825 
  • 8e Estevez JC. Estevez RJ. Castedo L. Tetrahedron Lett.  1993,  34:  6479 
  • For other recent contributions, see:
  • 8f Liegault B. Lee D. Huestis MP. Stuart DR. Fagnou KJ. Org. Chem.  2008,  73:  5022 
  • 8g Mal D. Senapati BK. Pahari P. Tetrahedron  2007,  63:  3768 
  • 8h Miguel del Corral JM. Castro MA. Gordaliza M. Martin ML. Gamito AM. Cuevas C. San Feliciano A. Bioorg. Med. Chem.  2006,  14:  2816 
  • 8i Bernardo PH. Chai CLL. Heath GA. Mahon PJ. Smith GD. Waring P. Wilkes BA. J. Med. Chem.  2004,  47:  4958 
  • 13 Ferlin MG. Marzano C. Gandin V. Dall’Acqua S. Dalla Via L. ChemMedChem  2009,  4:  363 ; and references therein
  • 14 Ashcroft WR. Dalton L. Beal MG. Humphrey GH. Joule JA. J. Chem. Soc., Perkin Trans. 1  1983,  2409 
9

All new compounds gave satisfactory analytical and spectroscopic data. Selected physical and spectroscopic data follow. Compound 6a: oil; IR (NaCl): 3282 (CºCH), 2106 (CºC), 1736 (C=O) cm; ¹H NMR (CDCl3): δ = 3.29 (s, 1 H, CH), 3.52 (s, 2 H, CH2), 3.66 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH3), 6.82 (d, J = 8.5 Hz, 1 H, ArH), 7.21 (dd, J = 8.5 Hz, 1 H, ArH), 7.35 (d, J = 2.0 Hz, 1 H, ArH); ¹³C NMR (CDCl3): δ = 39.8 (CH2), 52.0 (OCH3), 55.8 (OCH3), 80.0 (CH), 81.2 (C), 110.6 (ArH), 111.1 (Ar), 125.9 (Ar), 131.0 (ArH), 134.7 (ArH), 159.6 (Ar), 171.8 (C=O); MS: m/z (%) = 205 (100) [M + 1]+. Compound 6b: mp 81-83 ˚C (CH2Cl2-MeOH); IR (NaCl): 3250 (CºCH), 2070 (CºC), 1722 (C=O) cm; ¹H NMR (CDCl3): δ = 3.24 (s, 1 H, CH), 3.69 (s, 3 H, OCH3), 3.79 (s, 2 H, CH2), 3.85 (s, 3 H, OCH3), 3.87 (s, 3 H, OCH3), 6.79 (s, 1 H, ArH), 6.98 (s, 1 H, ArH); ¹³C NMR (CDCl3): d = 38.4 (CH2), 51.3 (OCH3), 55.2 (OCH3), 55.3 (OCH3), 79.8 (CH), 81.3 (C), 112.1 (ArH), 113.6 (Ar), 114.3 (ArH), 129.4 (Ar), 147.1 (Ar), 149.1 (Ar), 171.0 (C=O); MS: m/z (%) = 235 (100) [M + 1]+. Compound 7a: mp 87-88 ˚C (CH2Cl2-MeOH); IR (NaCl): 2205 (CºC), 1725 (C=O), 1565 (NO2), 1344 (NO2) cm; ¹H NMR (CDCl3): δ = 3.70 (s, 3 H, OCH3), 3.83 (s, 3 H, OCH3), 3.94 (s, 2 H, CH2), 6.83 (d, J = 8.5 Hz, 1 H, ArH), 6.86 (s, 1 H, ArH), 7.43 (t, J = 8.5 Hz, 1 H, ArH), 7.546 (m, 2 H, 2 × ArH), 7.70 (d, J = 9.1 Hz, 1 H, ArH), 8.08 (d, J = 8.2 Hz, 1 H, ArH); ¹³C NMR (CDCl3): δ = 40.2 (CH2), 52.6 (OCH3), 55.8 (OCH3), 87.7 (C), 96.1 (C), 113.5 (ArH), 115.3 (Ar), 116.1 (ArH), 119.6 (Ar), 125.2 (ArH), 128.6 (ArH), 133.3 (ArH), 134.8 (ArH), 134.9 (Ar), 139.1 (Ar), 160.9 (Ar), 171.9 (C=O); MS: m/z (%) = 326 (53) [M + 1]+, 207 (100). Compound 7b: mp 142-145 ˚C (CH2Cl2-MeOH); IR (NaCl): 2201 (CºC), 1724 (C=O), 1565 (NO2), 1337 (NO2) cm; ¹H NMR (CDCl3): δ = 3.71 (s, 2 H, CH2), 3.92 (s, 6 H, 2 × OCH3), 3.94 (s, 3 H, OCH3), 6.84 (s, 1 H, ArH), 7.08 (s, 1 H, ArH), 7.46 (t, J = 7.3 Hz, 1 H, ArH), 7.60 (t, J = 7.3 Hz, 1 H, ArH), 7.73 (d, J = 7.3 Hz, 1 H, ArH), 8.09 (d, J = 7.3 Hz, 1 H, ArH); ¹³C NMR (CDCl3): δ = 39.2 (CH2), 52.1 (OCH3), 55.9 (OCH3), 56.0 (OCH3), 87.7 (C), 95.7 (C), 112.6 (ArH), 114.6 (ArH), 118.9 (Ar), 124.7 (ArH), 128.2 (ArH), 130.5 (Ar), 132.8 (ArH), 134.4 (ArH), 147.8 (Ar), 148.8 (Ar), 150.2 (Ar), 171.7 (Ar), 179.2 (C=O); MS: m/z (%) = 356 (0.6) [M + 1]+, 17 (100). Compound 1a: mp 152-154 ˚C (CH2Cl2); IR (NaCl): 2204 (CºC), 1703 (C=O), 1564 (NO2), 1337 (NO2) cm; ¹H NMR (acetone-d 6): δ = 3.85 (s, 3 H, OCH3), 3.97 (s, 2 H, CH2), 6.93 (dd, J = 8.8, 2.5 Hz, 1 H, ArH), 7.03 (d, J = 2.5 Hz, 1 H, ArH), 7.48 (t, J = 7.3 Hz, 1 H, ArH), 7.63 (t, J = 7.3 Hz, 1 H, ArH), 7.77 (m, 2 H, ArH), 8.10 (d, J = 7.3 Hz, 1 H, ArH); ¹³C NMR (acetone-d 6): δ = 41.0 (CH2), 56.8 (OCH3), 89.3 (C), 97.3 (C), 114.6 (ArH), 116.6 (Ar), 118.0 (ArH), 120.3 (Ar), 126.5 (ArH), 130.7 (ArH), 134.0 (Ar), 135.1 (ArH), 135.8 (ArH), 136.3 (ArH), 141.5 (Ar), 162.6 (Ar), 173.1 (C=O); MS: m/z (%) = 312 (22) [M + 1]+, 282 (100). Compound 1b: mp 163-165 ˚C (CH2Cl2); IR (NaCl): 2204 (CºC), 1710 (C=O), 1566 (NO2), 1337 (NO2) cm; ¹H NMR (CDCl3): δ = 3.92 (s, 2 H, CH2), 3.92 (s, 6 H, 2 × OCH3), 6.89 (s, 1 H, ArH), 7.10 (s, 1 H, ArH), 7.48 (t, J = 7.3 Hz, 1 H, ArH), 7.63 (t, J = 7.3 Hz, 1 H, ArH), 7.77 (d, J = 7.3 Hz, 1 H, ArH), 8.10 (d, J = 7.3 Hz, 1 H, ArH); ¹³C NMR (CDCl3/DMSO-d 6): δ = 39.9 (CH2), 55.4 (OCH3), 55.5 (OCH3), 87.4 (C), 95.4 (C), 112.5 (ArH), 114.3 (Ar), 114.3 (ArH), 118.6 (Ar), 124.3 (ArH), 128.0 (ArH), 130.8 (Ar), 132.7 (ArH), 134.2 (ArH), 147.4 (Ar), 148.4 (Ar), 149.8 (Ar), 173.6 (C=O); MS: m/z (%) = 342 (0.6) [M + 1]+, 33 (100). Compound 2a: mp 141-142 ˚C (CH2Cl2); IR (NaCl): 1764 (C=O), 1514 (NO2), 1307 (NO2) cm; ¹H NMR (CDCl3): δ = 3.85 (s, 2 H, CH2), 3.87 (s, 3 H, OCH3), 6.68 (s, 2 H, ArH and CH), 6.91 (dd, J = 8.8 Hz, 1 H, ArH), 7.39 (t, J = 8.5 Hz, 1 H, ArH), 7.61 (m, 2 H, 2 × ArH), 7.97 (dd, J = 8.2 Hz, 1 H, ArH), 8.04 (dd, J = 8.0 Hz, 1 H, ArH); ¹³C NMR (CDCl3): δ = 35.0 (CH2), 55.5 (OCH3), 101.1 (CH), 111.8 (ArH), 114.7 (ArH), 120.0 (Ar), 124.6 (ArH), 126.6 (ArH), 127.7 (ArH), 128.5 (Ar), 130.5 (Ar), 132.1 (ArH), 132.8 (ArH), 148.1 (Ar), 148.6 (Ar), 161.6 (Ar), 165.0 (C=O); MS: m/z (%) = 312 (50) [M + 1]+, 282 (100). Compound 2b: mp 163-165 ˚C (CH2Cl2); IR (NaCl): 1736 (C=O), 1518 (NO2), 1292 (NO2) cm; ¹H NMR (CDCl3): δ = 3.85 (s, 2 H, CH2), 3.93 (s, 3 H, OCH3), 3.96 (s, 3 H, OCH3), 6.63 (s, 1 H, CH), 6.68 (s, 1 H, ArH) 7.09 (s, 1 H, ArH), 7.40 (t, J = 7.2 Hz, 1 H, ArH), 7.63 (t, J = 7.9 Hz, 1 H, ArH), 8.00 (d, J = 8.2 Hz, 1 H, ArH), 8.06 (d, J = 8.2 Hz, 1 H, ArH); ¹³C NMR (CDCl3/DMSO-d 6): δ = 34.2 (CH2), 56.1 (2 × OCH3), 101.2 (CH), 106.9 (ArH), 109.4 (ArH), 112.6 (Ar), 119.5 (Ar), 121.8 (Ar), 124.7 (ArH), 127.7 (ArH), 128.5 (Ar), 132.2 (ArH), 132.9 (ArH), 148.7 (Ar), 149.0 (Ar), 151.3 (Ar), 165.0 (C=O); MS: m/z (%) = 342 (0.6) [M + 1]+, 33 (100). Compound 9a: mp 205-206 ˚C (MeOH); IR (NaCl): 3331 (OH), 1675 (C=O), 1637 (C=O), 1525 (NO2), 1356 (NO2) cm; ¹H NMR (DMSO-d 6): δ = 4.03 (s, 3 H, OCH3), 7.41 (dd, J = 8.7 Hz, 1 H, ArH), 7.62-7.74 (m, 3 H, ArH), 7.80 (m, 1 H, ArH), 8.09 (d, J = 8.7 Hz, 1 H, ArH), 8.19 (d, J = 8.3 Hz, 1 H, ArH); ¹³C NMR (DMSO-d 6): δ = 57.0 (OCH3), 109.2 (ArH), 113.8 (Ar), 115.1 (Ar), 119.8 (ArH), 123.3 (ArH), 126.8 (Ar), 127.9 (ArH), 131.7 (ArH), 134.0 (ArH), 136.0 (ArH), 147.5 (Ar), 149.4 (Ar), 161.8 (Ar), 176.3 (Ar), 178.9 (C=O), 184.1 (C=O); MS: m/z (%) = 326 (100) [M + 1]+. Compound 9b: mp 266-268 ˚C (MeOH); IR (NaCl): 3349 (OH), 1642 (C=O), 1525 (NO2), 1337 (NO2) cm; ¹H NMR (CDCl3):
δ = 4.03 (s, 3 H, OCH3), 4.05 (s, 3 H, OCH3), 7.52-7.58 (m, 5 H, ArH + OH), 7.66 (m, 1 H, ArH), 8.17 (dd, J = 8.2 Hz, 1 H, ArH); ¹³C NMR (CDCl3): δ = 57.0 (OCH3), 57.1 (OCH3), 108.2 (ArH), 109.6 (ArH), 119.6 (Ar), 123.9 (Ar), 125.0 (ArH), 126.2 (Ar), 128.3 (Ar), 129.9 (ArH), 133.0 (ArH), 133.4 (ArH), 149.5 (Ar), 152.0 (Ar), 153.4 (Ar), 155.2 (Ar), 180.8 (C=O), 182.6 (C=O); MS: m/z (%) = 356 (29) [M + 1]+, 309 (100).

10

PdCl2(PPh3)2 (0.22 mmol) was added under argon to a degassed mixture of CuI (0.22 mmol) and o-iodophenyl-acetic acid ester 5a or 5b (3.6 mmol) in anhydrous THF (20 mL). After 5 min stirring, Et3N (5 mL) was first added, then TMS-acetylene (3.60 mmol) was slowly added and the resulting mixture was stirred at room temperature for 1.5 h for 6a or 12 h for 6b. The solids were filtered off through a Celite pad, the solvents were removed in vacuo, and the crude oil was poured into water and extracted with methylene chloride. The pooled organic liquids were washed with brine, dried over anhydrous sodium sulfate and concentrated to dryness in vacuo. Compound 6a or 6b were isolated by flash column chromatography.

11

PdCl2(PPh3)2 (0.16 mmol) was added under argon to a degassed mixture of CuI (0.16 mmol) and o-bromonitro-benzene (2.8 mmol) in anhydrous THF (20 mL). After 5 min stirring, Et3N (5 mL) was first added, then a solution of 6a or 6b (3.85 mmol) in anhydrous THF (10 mL) was slowly added and the resulting mixture was stirred at room temperature for 12 h. The solids were filtered off through a Celite pad, the solvents were removed in vacuo and the filtrate was concentrated to dryness in vacuo. Compound 7a or 7b were isolated by flash column chromatography.

12

In a flask containing 1a or 1b (1.00 equiv) and K2CO3 (0.10 equiv), acetonitrile (2 mL/0.4 mmol) was added under argon. The solution was purged with argon three times and then AuCl (0.10 equiv) was added. After stirring at room temperature for 12 h, the reaction mixture was filtered through a Celite pad and liquids from the filtrate were removed under reduced pressure. Flash column chroma-
tography of the crude material allowed compound 2a or 2b to be isolated.