Synlett 2009(19): 3219-3220  
DOI: 10.1055/s-0029-1218338
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Silica-Supported Perchloric Acid (HClO4-SiO2)

Upendra Sharma
Natural Plant Products Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, Himachal Pradesh 176 061, India
e-Mail: upendraihbt@gmail.com;
Further Information

Publication History

Publication Date:
13 November 2009 (online)

Introduction

Heterogeneous catalysts have gained much importance in recent years due to economic and environmental benefits. [¹] These catalysts make synthetic processes clean, safe, high-yielding, and inexpensive. [²] A tremendous interest has sparked in various chemical transformations promoted by catalysts under heterogeneous conditions. Recently, silica-supported perchloric acid (HClO4-SiO2), synthesized by Chakraborthi et al. [³] has been found to be an efficient and recyclable heterogeneous catalyst for various organic transformations, such as synthesis of bis-indolylmethanes, bis-indolylglycoconjugates, 1,4-dihydropyridines, coumarins via Pechmann condensation, 1,3-dithiolane/dithiane, transformation of thioglycosides to their corresponding 1-O-acetates, Ferrier rearrangement of glycols, acetal/ketal formation and chemoselective ­carbon-sulfur bond formation. It is also used in carbon-carbon formation between aldehydes and cyanides. Further, it is easy to handle, stable, and environmentally safe. Thus, silica-supported perchloric acid is a versatile organic reagent used as an acid catalyst.

For the preparation of silica-supported perchloric acid HClO4 (as a 70% aqueous solution) was added to the suspension of silica gel in diethyl ether. The mixture was concentrated and the residue heated at 100 ˚C for 72 h ­under vacuum to afford HClO4-SiO2 as a free flowing powder. [³]

    References

  • 1 Ramesh C. Ravindranath N. Das B. J. Org. Chem.  2003,  68:  7101 
  • 2 Tanaka K. Toda F. Chem. Rev.  2000,  100:  1025 
  • 3 Chakraborthi AK. Gulhane R. Chem. Commun.  2003,  1896 
  • 4 Winkler FW. Liebigs Ann. Chem.  1832,  4:  246 
  • 5 Heydari A. Ma¢Mani L. Appl. Organometal. Chem.  2008,  22:  12 
  • 6 Ion RM. Frackowiak D. Planner A. Wiktorowicz K. Acta Biochim. Pol.  1998,  45:  833 
  • 7 Bigdeli MA. Heravi MM. Mahdavinia GH. J. Mol. Catal. A: Chem.  2007,  275:  25 
  • 8 Das B. Kumar DN. Laxminarayana K. Ravikanth B. Helv. Chim. Acta  2007,  90:  1330 
  • 9 Narasimhulu M. Reddy TS. Mahesh KC. Prabhakar P. Rao CB. Venkateswarlu Y. J. Mol. Catal. A: Chem.  2007,  266:  114 
  • 10 Mannich C. Krosche W. Arch. Pharm.  1912,  250:  674 
  • 11 Bigdeli MA. Nemati F. Mahdavinia GH. Tetrahedron Lett.  2007,  48:  6801 
  • 12 Maheswara M. Siddaiah V. Rao YK. Tzeng YM. Sridhar C. J. Mol. Catal. A: Chem.  2006,  260:  179 
  • 13 Modarresi-Alam AR. Khamooshi F. Nasrol-Lahzadeh M. Amirazizi HA. Tetrahedron  2007,  63:  8723 
  • 14 Kantevari S. Bantu R. Nagarapu L. J. Mol. Catal. A: Chem.  2007,  269:  53 
  • 15 Agarwal A. Rani S. Vankar YD. J. Org. Chem.  2004,  69:  6137 
  • 16 Nagarapu L. Paparaju V. PathuriG . Kantevari S. Pakkiru RR. Kamalla R. J. Mol. Catal. A: Chem.  2007,  267:  53 
  • 17 Shaterian HR. Yarahmadi H. Ghashang M. Tetrahedron  2008,  64:  1263 
  • 18 Das B. Laxminarayana K. Ravikanth B. J. Mol. Catal. A: Chem.  2007,  271:  131 
  • 19 Sethna SM. Phadke R. Org. React.  1953,  7:  1 
  • 20 Maheswara M. Siddaiah V. Damu GLV. Rao YK. Rao CV. J. Mol. Catal. A: Chem.  2006,  255:  49