Subscribe to RSS
DOI: 10.1055/s-0029-1218285
Efficient Suzuki-Miyaura Coupling of Deactivated Aryl Chlorides Catalyzed by an Oxime Palladacycle
Publication History
Publication Date:
09 October 2009 (online)

Abstract
Aryl chlorides are efficiently cross-coupled with aryl boronic acids using 0.25 mol% of 4,4′-dichlorobenzophenone oxime derived palladacycle as precatalyst in the presence of 1 mol% of [HP(t-Bu)3]BF4 as ligand, K2CO3 as base, TBAOH as additive, and DMF as solvent under conventional thermal or MW irradiation conditions. Under these simple reaction conditions a wide array of deactivated and hindered aryl chlorides react cleanly to afford in high yields functionalized biaryl derivatives.
Key words
palladacycles - boronic acids - cross-coupling - biaryls - Suzuki reaction
- 1a
Littke A. In Modern Arylation MethodsAckermann L. Wiley-VCH; Weinheim: 2009. p.25Reference Ris Wihthout Link - 1b
Catellani M.Motti E.Della Ca’ N.Ferraccioli R. Eur. J. Org. Chem. 2007, 4153Reference Ris Wihthout Link - 1c
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174Reference Ris Wihthout Link - 1d
Suzuki A. In Boronic Acids. Preparation, Applications in Organic Synthesis and MedicineHall DG. Wiley-VCH; Weinheim: 2005. p.123Reference Ris Wihthout Link - For recent selected reviews, see:
- 2a
Alonso F.Beletskaya IP.Yus M. Tetrahedron 2008, 64: 3047Reference Ris Wihthout Link - 2b
Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions 2nd ed., Vol. 1:de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.41Reference Ris Wihthout Link - For recent reviews, see:
- 3a
Martin R.Buchwald SL. Acc. Chem. Res. 2008, 41: 1461Reference Ris Wihthout Link - 3b
Fu GC. Acc. Chem. Res. 2008, 41: 1555Reference Ris Wihthout Link - For representative examples, see:
- 4a
Littke AF.Dai C.Fu GC. J. Am. Chem. Soc. 2000, 122: 4020Reference Ris Wihthout Link - 4b
Zapf A.Ehrentraut A.Beller M. Angew. Chem. Int. Ed. 2000, 39: 4153Reference Ris Wihthout Link - 4c
Walker SD.Barder TE.Martinelli JR.Buchwald SL. Angew. Chem. Int. Ed. 2004, 43: 1871Reference Ris Wihthout Link - For recent reviews, see:
- 5a
Marion N.Nolan SP. Acc. Chem. Res. 2008, 41: 1440Reference Ris Wihthout Link - 5b
Würtz S.Glorius F. Acc. Chem. Res. 2008, 41: 1523Reference Ris Wihthout Link - 5c
Organ MG.Chass GA.Fang D.-C.Hopkinson AC.Valente C. Synthesis 2008, 2776Reference Ris Wihthout Link - 5d
Kantchev EAB.O’Brien CJ.Organ MG. Angew. Chem. Int. Ed. 2007, 46: 2768Reference Ris Wihthout Link - For representative examples, see:
- 6a
Gstöttmayr CWK.Böhm VPW.Herdtweck E.Grosche M.Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1363Reference Ris Wihthout Link - 6b
Herrmann WA.Öfele K.Schneider SK.Herdtweck E.Hoffmann SD. Angew. Chem. Int. Ed. 2006, 45: 3859Reference Ris Wihthout Link - 6c
Diebolt O.Braunstein P.Nolan SP.Cazin CSJ. Chem. Commun. 2008, 3190Reference Ris Wihthout Link - 6d
Organ MG.Çalimsiz S.Sayah M.Hoi KH.Lough AJ. Angew. Chem. Int. Ed. 2009, 48: 2383Reference Ris Wihthout Link - 7
Palladacycles: Synthesis,
Characterization and Applications
Dupont J.Pfeffer M. Wiley-VCH; Weinheim: 2008.Reference Ris Wihthout Link - 8a
Bedford RB.Cazin CSJ. Chem. Commun. 2001, 1540Reference Ris Wihthout Link - 8b
Schnyder A.Indolese AF.Studer M.Blaser H.-U. Angew. Chem. Int. Ed. 2002, 41: 3668Reference Ris Wihthout Link - 8c
Bedford RB.Cazin CSJ.Hazelwood SL. Angew. Chem. Int. Ed. 2002, 41: 4120Reference Ris Wihthout Link - 9
Navarro O.Kelly RA.Nolan SP. J. Am. Chem. Soc. 2003, 125: 16194 - 10
Alacid E.Alonso DA.Botella L.Nájera C.Pacheco MC. Chem. Rec. 2006, 6: 117 - 11a
Alonso DA.Nájera C.Pacheco MC. Org. Lett. 2000, 2: 1823Reference Ris Wihthout Link - 11b
Alonso DA.Nájera C.Pacheco MC. J. Org. Chem. 2002, 67: 5588Reference Ris Wihthout Link - 12a
Botella L.Nájera C. Angew. Chem. Int. Ed. 2002, 41: 179Reference Ris Wihthout Link - 12b
Botella L.Nájera C. J. Organomet. Chem. 2002, 663: 46Reference Ris Wihthout Link - 12c
Alacid E.Nájera C. J. Organomet. Chem. 2009, 694: 1658Reference Ris Wihthout Link - 13
Appukkuttan P.Van der Eyken E. Eur. J. Org. Chem. 2008, 1133 - 14
Netherton MR.Fu GC. Org. Lett. 2001, 3: 4295 - 16
Goubet D.Meric P.Dormoy J.-R.Moreau P. J. Org. Chem. 1999, 64: 4516 - 18a
p-Biphenylacetic acid(felbinac) and 2-ethyl-4-biphenylacetic acid with dimethylaminoethanol-(namoxyrate) are anti-inflamatory and analgesic drugs, respectively: USP Dictionary of USAN and International Drugs names.
Reference Ris Wihthout Link - 18b
p-Biphenylacetamides
have been used as mesogenic arms in porphyrin thermotropic liquid
crystals:
Michaeli S.Hugerat M.Levanon H.Bernitz M.Natt A.Neumann R. J. Am. Chem. Soc. 1992, 114: 3612Reference Ris Wihthout Link
References and Notes
At this point, the efficiency of the previously tested phosphane ligands with TBAOH as additive was tested again, showing in all cases lower activities. For example, P(t-Bu)3 only led to a 31% isolated yield of 4a.
17
Typical Procedure
for the Suzuki Coupling under MW Irradiation Conditions (Table 2,
Entry 3)
A freshly stock soln of catalyst 1 (150 µg, 0.019 mmol) in DMF
(2.5 mL) and [HP(t-Bu)3]BF4 (110
g, 0.0375 mmol) in DMF (2.5 mL) were previously prepared and used.
A 10 mL MW vessel was charged with K2CO3 (1.5
mmol, 207 mg), TBAOH (0.15 mmol, 120 mg), PhB(OH)2 (1.88
mmol, 225 mg), catalyst 1 (250 µL
of the stock soln, 0.0019 mmol, 15 µg, 0.5 mol% Pd), [HP(t-Bu)3]BF4 (250 µL
of the stock soln, 0.00375 mmol, 11 µg), 4-chloroanisole
(0.75 mmol, 92 µL), and DMF (1.5 mL). The vessel was sealed
with a pressure lock, and the mixture was heated in air at 130 ˚C
by a MW irradiation of 40 W for 20 min in a CEM Discover MW reactor.
After allowing the reaction to cool down to r.t., the mixture was
filtered through a pad of Celite and poured into an excess of H2O
(5 mL) and extracted with Et2O (3 × 5
mL). The combined organic phases were washed with H2O
(3 × 5 mL), dried (MgSO4),
and evaporated. The obtained crude product was purified by recrystallization
in MeOH-H2O (3:1), yielding 102 mg of pure 4-methoxybiphenyl
(4a, 74%) as a white solid; mp
89-93 ˚C. ¹H NMR (300 MHz,
CDCl3): δ = 7.57-7.51 (m,
4 H, ArH), 7.42 (t, J = 7.5
Hz, 2 H, ArH), 7.30 (t, J = 7.2
Hz, 1 H, ArH), 6.98 (d, J = 8.7
Hz, 2 H, ArH), 3.86 (s, 3 H, CHO). MS (EI, 70 eV): m/z (%) = 184
(100) [M+], 169 (49) [M+ - Me],
141 (49), 139 (13), 115 (35).