Synthesis 2009(22): 3880-3896  
DOI: 10.1055/s-0029-1218154
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Biaryl-Containing Medium-Ring Systems by Organocuprate Oxidation: Applications in the Total Synthesis of Ellagitannin Natural Products

Xianbin Su, Gemma L. Thomas, Warren R. J. D. Galloway, David S. Surry, Richard J. Spandl, David R. Spring*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
Fax: +44(1223)336362; e-Mail:;
Further Information

Publication History

Received 11 August 2009
Publication Date:
07 October 2009 (online)


In this feature article we discuss the construction of biaryl-containing medium-sized rings by organocuprate oxidation and the application of this chemistry in the synthesis of members of the ellagitannin family of natural products. A concise and efficient total synthesis of the ellagitannin sanguiin H-5 is highlighted. Studies towards the synthesis of elaeocarpusin are also presented.

1 Introduction

2 Results and Discussion

2.1 Total Synthesis of Sanguiin H-5

2.2 Studies towards the Total Synthesis of Elaeocarpusin

2.2.1 Towards Elaeocarpusin: Organocuprate Oxidation

2.2.2 Towards Elaeocarpusin: A Double Esterification Approach

3 Conclusions


  • 1 Rousseau G. Tetrahedron  1995,  51:  2777 
  • 2a A medium ring is defined as a ring containing 8 to 11 atoms, see: Surry D. Spring DR. Chem. Soc. Rev.  2006,  35:  218 
  • For other selected metal-mediated methods towards biaryl-containing medium rings, see for palladium:
  • 2b Lee PH. Seomoon D. Lee K. Org. Lett.  2005,  7:  343 
  • 2c Hennings DD. Iwama T. Rawal VH. Org. Lett.  1999,  1:  1205 
  • For nickel, see:
  • 2d Nelson TD. Crouch RD. Org. React.  2004,  63:  265 
  • 2e Semmelhack MF. Helquist P. Jones LD. Keller L. Mendelson L. Ryono LS. Smith JG. Stauffer RD. J. Am. Chem. Soc.  1981,  103:  6460 
  • For copper, see:
  • 2f Dai D. Martin OR. J. Org. Chem.  1998,  63:  7628 
  • 2g Takahashi M. Ogiku T. Okamura K. Da-te T. Ohmizu H. Kondo K. Iwasaki T. J. Chem. Soc., Perkin Trans. 1  1993,  1473 
  • For recent discussions of diversity-oriented synthesis, see:
  • 3a Galloway WRJD. Bender A. Welch M. Spring DR. Chem. Commun.  2009,  2446 
  • 3b Nielsen TE. Schreiber SL. Angew. Chem. Int. Ed.  2008,  47:  48 
  • 3c Galloway WRJD. Diaz-Gavilan M. Isidro-Llobet A. Spring DR. Angew. Chem. Int. Ed.  2009,  48:  1194 
  • 4a First isolation of rhazinilam, see: Banerji A. Majumder PL. Chatterjee AG. Phytochemistry  1970,  9:  1491 
  • 4b First isolation of buflavine, see: Viladomat F. Bastida J. Codina C. Campbell WE. Mathee S. Phytochemistry  1995,  40:  307 
  • 5 Hline SS. Pham P.-TT. Pham P.-TT. Aung MH. Pham P.-MT. Pham P.-CT. J. Ther. Clin. Risk Manag.  2008,  4:  315 
  • 6a Lei A. Wu S. He M. Zhang X. J. Am. Chem. Soc.  2004,  126:  1626 
  • 6b Wu S. Wang W. Tang W. Lin M. Zhang X. Org. Lett.  2002,  4:  4495 
  • 7a Surry D. Su X. Fox DJ. Franckevicius V. Macdonald SJF. Spring DR. Angew. Chem. Int. Ed.  2005,  44:  1870 
  • 7b Su X. Fox DJ. Blackwell DT. Tanaka K. Spring DR. Chem. Commun.  2006,  3883 
  • 7c Su X. Surry D. Spandl RJ. Spring DR. Org. Lett.  2008,  10:  2593 
  • 7d The term organocuprate refers to a species of the form [M(CuR2)]n containing an anionic copper species (where M refers to a metal other then copper), see: Woodward S. Chem. Soc. Rev.  2000,  29:  393 
  • For previous work on the oxidation of organocuprates derived from organolithium precursors, see:
  • 9a Whitesides GM. Casey CP. Panek EJ. J. Am. Chem. Soc.  1967,  89 
  • 9b Lipshutz BH. Kayser F. Liu ZP. Angew. Chem. Int. Ed.  1994,  33:  1842 
  • 10 Spring DR. Krishnan S. Blackwell HE. Schreiber SL. J. Am. Chem. Soc.  2002,  124:  1354 
  • 11a Khanbabaee K. van Ree T. Nat. Prod. Rep.  2001,  18:  641 
  • 11b Quideau S. Feldman KS. Chem. Rev.  1996,  96:  475 
  • 12a Feldman KS. Phytochemistry  2005,  66:  1984 
  • 12b Khanbabaee K. van Ree T. Synthesis  2001,  1585 
  • 12c Feldman KS. Ensel SM. J. Am. Chem. Soc.  1994,  116:  3357 
  • 12d Feldman KS. Quideau S. Appel HM. J. Org. Chem.  1996,  61:  6656 
  • 12e Feldman KS. Sambandam A. J. Org. Chem.  1995,  60:  8171 
  • 12f Feldman KS. Iyer MR. Liu Y. J. Org. Chem.  2003,  68:  7433 
  • 12g Feldman KS. Lawlor MD. J. Am. Chem. Soc.  2000,  122:  7396 
  • 12h Yamada H. Nagao K. Dokei K. Kasai Y. Michihata N. J. Am. Chem. Soc.  2008,  130:  7566 
  • 13 This is consistent with the finding of Power that the free acid derivative of 19 could not be iodinated with aqueous iodine, see: Power FB. Shedden F. Pharm. J.  1901,  13:  147 
  • 14 McKillop A. Fowler JS. Zelesko MJ. Hunt JD. Tetrahedron Lett.  1969,  10:  2423 
  • 15 Molander GA. George KM. Monovich LG. J. Org. Chem.  2003,  68:  9533 
  • Methods examined: Electrophilic iodination:
  • 17a Molander GA. George KM. Monovich LG. J. Org. Chem.  2003,  68:  9533 
  • 17b Orito K. Hatakeyama T. Takeo M. Suginome H. Synthesis  1995,  1273 
  • 17c van Laak K. Scharf HD. Tetrahedron  1989,  45:  5511 
  • 17d Suzuki’s oxidative conditions: Suzuki H. Bull. Chem. Soc. Jpn.  1971,  44:  2871 
  • 17e Directed ortho-lithiation and iodine quench, see: Gohier F. Mortier J. J. Org. Chem.  2003,  68:  2030 
  • 18 Krasovskiy A. Knochel P. Angew. Chem. Int. Ed.  2004,  43:  3333 
  • 19 Fillon H. Gosmini C. Perichon J. J. Am. Chem. Soc.  2003,  125:  3867 
  • 20a Hosoya T. Takashiro E. Matsumoto T. Suzuki K. J. Am. Chem. Soc.  1994,  116:  1004 
  • 20b Sala T. Sargent MV. J. Chem. Soc., Chem. Commun.  1978,  253 
  • 21 Leopold EJ. Org. Synth., Coll. Vol. VII   John Wiley & Sons; New York: 1990.  p.258 
  • 22 Bal BS. Childers WE. Pinnick HW. Tetrahedron  1981,  37:  2091 
  • 23 Tanaka H. Kawai K. Fujiwara K. Murai A. Tetrahedron  2002,  58:  10017 
  • 24a The atrop-(S) configuration of 8 obtained by this route was confirmed by comparison with a sample synthesised via a double esterification sequence using enantiopure (S)-hexabenyloxy-diphenic acid (S)-30 and glucopyranose derivative 11. Samples of compound 8 prepared by both routes exhibited identical spectral data. See: Kashiwada Y. Huang L. Ballas LM. Jiang JB. Janzen WP. Lee K.-H. J. Med. Chem.  1994,  37:  195 
  • 24b Diacid 30 was prepared from ellagic acid as detailed in the literature. Chemical resolution used (+)-cinconine as the chiral resolution reagent, see: Schmidt OT. Voigt H. Puff W. Köster R. Justus Liebigs Ann. Chem.  1954,  586:  165 
  • 25a Schmidt OT. Fortschr. Chem. Org. Naturst.  1956,  13:  70 
  • 25b Haslam E. Plants Polyphenols-Vegetable Tannins Revisited   Cambridge University Press; Cambridge: 1989. ; See also ref. 12e
  • 27a Okuda T. Yoshida T. Hatano T. Ikeda Y. Heterocycles  1986,  24:  1841 
  • 27b Tanaka T. Nonaka G.-I. Nishioka I. Miyahara K. Kawasaki T. J. Chem. Soc., Perkin Trans. 1  1986,  369 
  • 31 Barbera J. Iglesias R. Serrano JL. Sierra T. de la Fuente MR. Palacios B. Perez-Jubindo MA. Vazquez J. J. Am. Chem. Soc.  1998,  120:  2908 
  • 32 Battersby AR. Jones RCF. Kazlauskas R. Thornber CW. Ruchirawat S. Staunton J. J. Chem. Soc., Perkin Trans. 1  1981,  2017 
  • 33 Carlsson A. Linquist M. Fila-Hromadko S. Corrodi H. Helv. Chim. Acta.  1962,  45:  270 
  • 34 Latte KP. Kolodziej H. Phytochemistry  2000,  54:  701 

It is not entirely obvious why the oxidative coupling of organocuprates should be so effective at forming medium-ring biaryl systems, especially given the difficulties associated with the use of more conventional palladium-mediated methods. It has been postulated that the approximately linear geometry of the [R-Cu-R] bond of the organocuprate intermediate may be the key (Scheme  [¹] ). Such an arrangement may keep groups that could otherwise suffer destabilising transannular interactions well separated from each other. However, it is not immediately apparent how such a system may progress to a configuration in which reductive elimination could occur whilst still minimising transannular interactions.


Feldman K. S. Personal communication. See also ref. 12d.


Sanguiin H-5 was found to be hydrolytically unstable on silica and alumina, making further purification problematic. Chromatography using reversed-phase (C-18) silica could be used if required; however, the filtered, concentrated reaction mixture gave material of ˜95% purity.


Conformational analysis of the 11-membered medium-ring in 33 reveals that it does not have a low-energy conformation where both esters’ groups are capable of obtaining their preferred U-shape (s-cis) simultaneously (unlike the northern-hemisphere 12-membered ring). The crystal structure of geraniin (31) shows that the strain in the
11-membered ring is relieved somewhat, since both esters’ groups can form a lower energy s-trans conformation. We hypothesize that the internal strain inherent in this medium-ring may make this system more susceptible to oxidation, and be the reason why the 2,4-bridging biaryl group has never been observed as such in ellagitannin natural products (see ref. 11b).


Attempts to protect the 3-hydroxyl group of 35 with the silane protecting groups TBS and TMS were unsuccessful. In addition, attempts to protect this hydroxyl group with a benzoyl group (by reaction with benzoyl chloride) also met with failure.


Treatment of laevoglucosan (35) with allyl bromide or iodide in the presence of sodium hydride generated fully alkylated product rather than the desired 2,4-allyl protected derivative. Silver triflate was found to be essential for the generation of 42 from 41.