Synlett 2009(14): 2341-2345  
DOI: 10.1055/s-0029-1217811
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel Oxidation Reaction of Tertiary Amines with Osmium Tetroxide

Hideaki Fujii, Ryo Ogawa, Eikichi Jinbo, Saori Tsumura, Toru Nemoto, Hiroshi Nagase*
School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
Fax: +81(3)34425707; e-Mail: nagaseh@pharm.kitasato-u.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 1 May 2009
Publikationsdatum:
07. August 2009 (online)

Abstract

Tertiary amines were oxidized with OsO4 to afford mixtures of lactams, hydroxylactams, and ketolactams. In contrast to RuO4, which was known to oxidize tertiary amines, amides, and N-carbamoylamines, OsO4 oxidized the tertiary amines exclusively and tolerated amides and N-carbamoylamines. A mechanism for the oxidation reaction is also proposed.

    References and Notes

  • 1a Schröder M. Chem. Rev.  1980,  80:  187 
  • 1b Haines AH. In Methods for the Oxidation of Organic Compounds   Academic Press; London: 1985.  p.75-84  
  • 1c Singh HS. In Organic Syntheses by Oxidation with Metal Compounds   Mijis WJ. de Jonge CRHI. Plenum Press; New York: 1986.  p.633-693.  
  • 2a Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 2b Waldmann H. In Organic Synthesis Highlights II   Wiley-VCH; Weinheim: 1995.  p.9-18  
  • 2c Kolb HC. Sharpless KB. In Transition Metals for Organic Synthesis   Vol. 2:  Beller M. Bolm C. Wiley-VCH; Weinheim: 2004.  p.275-307  
  • 3a Maione AM. Romeo A. Synthesis  1984,  955 
  • 3b Coleman KS. Coppe M. Thomas C. Osborn JA. Tetrahedron Lett.  1999,  40:  3723 
  • 3c Döbler C. Mehltretter GM. Sundermeier U. Eckert M. Militzer H.-C. Beller M. Tetrahedron Lett.  2001,  42:  8447 
  • 3d Muldoon J. Brown SN. Org. Lett.  2002,  4:  1043 
  • 4a Henbest HB. Khan SA. J. Chem. Soc., Chem. Commun.  1968,  1036 
  • 4b Hauser FM. Ellenberger SR. Clardy JC. Bass LS. J. Am. Chem. Soc.  1984,  106:  2458 
  • 4c Solladié G. Fréchou C. Demailly G. Tetrahedron Lett.  1986,  27:  2867 
  • 4d Kaldor SW. Hammond M. Tetrahedron Lett.  1991,  32:  5043 
  • 4e Priebe W. Grynkiewicz G. Tetrahedron Lett.  1991,  32:  7353 
  • 5a Schröder M. Griffith WP. J. Chem. Soc., Dalton Trans.  1978,  1599 
  • 5b Bassignani L. Brandt A. Caciagli V. Re L. J. Org. Chem.  1978,  43:  4245 
  • 5c Hillis LR. Ronald RC. J. Org. Chem.  1985,  50:  470 
  • 5d Armstrong A. Gethin DM. Wheelhouse CJ. Synlett  2004,  350 
  • 6 Gao S. Herzig D. Wang B. Synthesis  2001,  544 
  • 6a Cook JW. Schoental R. J. Chem. Soc.  1948,  170 
  • 6b Okamoto A. Tainaka K. Kamei T. Org. Biomol. Chem.  2006,  4:  1638 
  • 6c Tanaka K. Tainaka K. Okamoto A. Bioorg. Med. Chem.  2007,  15:  1615 
  • 6d Umemoto T. Okamoto A. Org. Biomol. Chem.  2008,  6:  269 
  • Compound 1a:
  • 8a Gates M. Montzka TA. J. Med. Chem.  1964,  7:  127 
  • 8b Osa Y. Ida Y. Yano Y. Furuhata K. Nagase H. Heterocycles  2006,  69:  271 
  • 8c Fujii H. Osa Y. Ishihara M. Hanamura S. Nemoto T. Nakajima M. Hasebe K. Mochizuki H. Nagase H. Bioorg. Med. Chem. Lett.  2008,  18:  4978 
  • Compound 1b:
  • 9a Coop A. Janetka JW. Lewis JW. Rice KC. J. Org. Chem.  1998,  63:  4392 
  • 9b Carroll RJ. Leisch H. Rochon L. Hudlicky T. Cox DP. J. Org. Chem.  2009,  74:  747 
  • 10a Minato M. Yamamoto K. Tsuji J. J. Org. Chem.  1990,  55:  766 
  • 10b Kwong H.-L. Sorato C. Ogino Y. Chen H. Sharpless KB. Tetrahedron Lett.  1990,  21:  2999 
  • 11a Nan Y. Xu W. Zaw K. Hughes KE. Huang L.-F. Dunn WJ. Bauer L. Bhargava HN. J. Heterocycl. Chem.  1997,  34:  1195 
  • 11b Meredith W. Nemeth GA. Boucher R. Carney R. Haas M. Sigvardson K. Teleha CA. Tetrahedron Lett.  2003,  44:  73814 
  • 11c Fujii H. Imaide S. Watanabe A. Nemoto T. Nagase H. Tetrahedron Lett.  2008,  49:  6293 
  • Dihydroxylation of enamines by OsO4 oxidation was reported to occur:
  • 12a Kutney JP. Bylsma F. J. Am. Chem. Soc.  1970,  92:  6090 
  • 12b LaLonde RT. Auer E. Wong CF. Muralidharan VP. J. Am. Chem. Soc.  1971,  93:  2501 
  • 12c Mangeney P. Andriamialisoa RZ. Lanlois N. Langlois N. Langlois Y. Potier P. J. Am. Chem. Soc.  1979,  101:  2243 
  • Enamine moieties in indoles were reportedly oxidized with OsO4 to indolinones via dihydroindolines:
  • 13a For recent examples, see: Sundberg RJ. In The Chemistry of Indoles   Academic Press; London: 1970.  p.298 
  • 13b Kitajima M. Takayama H. Sakai S. J. Chem. Soc., Perkin Trans. 1  1994,  1573 
  • 13c Takayama H. Tominaga Y. Kitajima M. Aimi N. Sakai S. J. Org. Chem.  1994,  59:  4381 
  • 13d Peterson AC. Cook JM. J. Org. Chem.  1995,  60:  120 
  • 13e Wearing XZ. Cook JM. Org. Lett.  2002,  4:  4237 
  • 16 Nagase H. Abe A. Portoghese PS. J. Org. Chem.  1989,  54:  4120 
  • 17a Carlsen PHJ. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem.  1981,  46:  3936 
  • 17b Courtney JL. In Organic Syntheses by Oxidation with Metal Compounds   Mijis WJ. de Jonge CRHI. Plenum Press; New York: 1986.  p.445-467  
  • 17c Murahashi S. Komiya N. In Ruthenium in Organic Synthesis   Murahashi S. Wiley-VCH; Weinheim: 2004.  p.53-93  
  • 17d Bernd P. Synthesis  2005,  2453 
  • TPAP (tetra-n-propylammonium perruthenate) was also used in organic synthesis. See the following reviews:
  • 18a Ley SV. In Comprehensive in Organic Synthesis   Vol. 7:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.305-327  
  • 18b Griffith WP. Chem. Soc. Rev.  1992,  21:  179 
  • 18c Ley SV. Norman J. Griffith WP. Synthesis  1994,  639 
  • 19a Sheehan JC. Tulis RW. J. Org. Chem.  1974,  39:  2264 
  • 19b Bettoni G. Franchini C. Morlacchi F. Tangari N. Tortorella V. J. Org. Chem.  1976,  41:  2780 
  • 19c Yoshifuji S. Tanaka K. Nitta Y. Chem. Pharm. Bull.  1985,  33:  1749 
  • 19d Yoshifuji S. Arakawa Y. Nitta Y. Chem. Pharm. Bull.  1985,  33:  5042 
  • 19e Yoshifuji S. Tanaka K. Kawai T. Nitta Y. Chem. Pharm. Bull.  1985,  33:  5515 
  • 19f Yoshifuji S. Tanaka K. Kawai T. Nitta Y. Chem. Pharm. Bull.  1986,  34:  3873 
  • 19g Kaname M. Yoshifuji S. Sashida H. Tetrahedron Lett.  2008,  49:  2786 
  • 20 Compound 1f: Horikiri H. Kawamura K. Heterocycles  2004,  63:  865 
14

In the Supporting Information, the deprotonation of osmate ester is discussed in detail.

15

Plausible mechanisms to amide 2 and lactam 6 are described in the Supporting Information.

21

Oxidation of Amine with OsO 4 Stoichiometric Reaction Conditions: Conditions I
To the solution of amine in pyridine was added OsO4 (3 mol equiv) and stirred at r.t. for the time indicated in Tables  [¹] and  [²] . The aqueous solution of Na2SO3 was added to the reaction mixture and stirred vigorously at r.t. for several hours. The resulting mixture was evaporated under reduced pressure and extracted with CHCl3. The organic layer was washed with brine and dried over Na2SO4. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography and/or preparative TLC.
Catalytic Reaction Conditions: Conditions II
Amine was added to the solution of K3Fe(CN)6 (9 mol equiv), K2CO3 (9 mol equiv), and OsO4 (0.1 mol equiv) in t-BuOH and distilled H2O (1:1) and stirred at r.t. for the time indicated in Tables  [¹] and  [²] . To the reaction mixture was added the aqueous solution of Na2SO3 and stirred at r.t. for several hours. The resulting mixture was poured into distillated H2O and extracted with CHCl3. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography and/or preparative TLC.

22

Amide 2a
¹H NMR (300 MHz, CDCl3): δ = 0.67-1.25 (m, 5 H), 1.44-1.86 (m, 6 H), 1.93-2.02 (m, 0.7 H), 2.07-2.15 (m, 0.3 H), 2.54-2.63 (m, 0.3 H), 2.62 (d, J = 18.3 Hz, 0.7 H), 2.76 (d, J = 18.0 Hz, 0.3 H), 2.90 (dd, J = 5.9, 18.3 Hz, 0.7 H), 3.00 (dd, J = 5.4, 18.0 Hz, 0.3 H), 3.05-3.18 (m, 0.7 H), 3.76-3.93 (m, 2 H), 3.89 (s, 3 H), 3.96-4.09 (m, 1.7 H), 4.14-4.24 (m, 1 H), 4.38-4.47 (m, 0.3 H), 4.49 (s, 1 H), 4.65 (br s, 0.3 H), 5.10-5.16 (m, 0.7 H), 6.64 (br d, J = 8.4 Hz, 1 H), 6.78 (d, J = 8.1 Hz, 1 H). IR (film): 3467, 2947, 1632, 1502, 1437, 1261, 1168, 1017 cm. HRMS-FAB: m/z calcd for C23H28NO5 [M + H]+: 398.1962; found: 398.1976.



Ketolactam 3
¹H NMR (300 MHz, CDCl3): δ = 1.31-1.58 (m, 2 H), 1.66-1.82 (m, 2 H), 2.63-2.73 (m, 1 H), 2.78-2.96 (m, 2 H), 3.71-4.03 (m, 4 H), 3.87 (s, 3 H), 4.20-4.29 (m, 1 H), 5.42 (s, 1 H), 6.67 (d, J = 8.1 Hz, 1 H), 6.86 (d, J = 8.4 Hz, 1 H), 7.74 (br s, 1 H). IR (film): 1736, 1694 cm. HRMS-FAB: m/z calcd for C19H20NO6 [M + H]+: 358.1291; found: 358.1300.
Ketolactam 4a
¹H NMR (300 MHz, CDCl3): δ = 0.28-0.40 (m, 2 H), 0.49-0.69 (m, 2 H), 1.03-1.18 (m, 1 H), 1.35-1.61 (m, 2 H), 1.66-1.86 (m, 2 H), 2.67-2.76 (m, 1 H), 2.78 (dd, J = 4.2, 17.7 Hz, 1 H), 2.93 (dd, J = 6.9, 14.1 Hz, 1 H), 3.04 (dd, J = 1.2, 17.7 Hz, 1 H), 3.75-4.10 (m, 5 H), 3.86 (s, 3 H), 4.21-4.29 (m, 1 H), 5.40 (s, 1 H), 6.65 (d, J = 8.1 Hz, 1 H), 6.84 (d, J = 8.1 Hz, 1 H). IR (film): 2923, 1733, 1670 cm. HRMS-FAB: m/z calcd for C23H26NO6 [M + H]+: 412.1760; found: 412.1776.
Hydroxylactam 5a
¹H NMR (300 MHz, CDCl3): δ = 0.21-0.36 (m, 2 H), 0.45-0.65 (m, 2 H), 0.99-1.13 (m, 1 H), 1.17-1.35 (m, 1 H), 1.51-1.77 (m, 3 H), 2.60-2.71 (m, 2 H), 2.76 (dd, J = 7.1, 14.0 Hz, 1 H), 2.89 (br d, J = 17.4 Hz, 1 H), 3.71-4.00 (m, 6 H), 3.87 (s, 3 H), 4.17-4.25 (m, 1 H), 5.17 (s, 1 H), 6.59 (d, J = 8.1 Hz, 1 H), 6.79 (d, J = 8.1 Hz, 1 H). One proton of the OH group was not observed. IR (film): 3294, 2928, 1623, 1503, 1439, 1276, 1194, 1055 cm. HRMS-FAB: m/z calcd for C23H28NO6 [M + H]+: 414.1917; found: 414.1896.
Lactam 6a
¹H NMR (300 MHz, CDCl3): δ = 0.21-0.34 (m, 2 H), 0.45-0.63 (m, 2 H), 0.98-1.12 (m, 1 H), 1.18-1.35 (m, 1 H), 1.52-1.77 (m, 3 H), 2.35 (dt, J = 12.7, 3.7 Hz, 1 H), 2.61 (d, J = 17.1 Hz, 1 H), 2.60-2.77 (m, 2 H), 2.72 (d, J = 17.4 Hz, 1 H), 2.93 (dd, J = 1.2, 17.4 Hz, 1 H), 3.73-3.81 (m, 1 H), 3.84-4.02 (m, 4 H), 3.87 (s, 3 H), 4.20 (dt, J = 5.2, 6.8 Hz, 1 H), 4.49 (s, 1 H), 6.60 (d, J = 8.4 Hz, 1 H), 6.77 (d, J = 8.1 Hz, 1 H). IR (film): 2923, 1635, 1504, 1440 cm. HRMS-FAB: m/z calcd for C23H28NO5 [M + H]+: 398.1967; found: 398.1962.
Iminoketone 7
¹H NMR (400 MHz, CDCl3): δ = 1.28-1.41 (m, 1 H), 1.44-1.54 (m, 1 H), 1.68-1.78 (m, 2 H), 2.45 (ddd, J = 3.2, 4.3, 12.3 Hz, 1 H), 2.91 (ddd, J = 0.8, 5.4, 17.9 Hz, 1 H), 2.96 (ddd, J = 0.7, 2.0, 17.8 Hz, 1 H), 3.77-3.82 (m, 1 H), 3.86 (s, 3 H), 3.91 (dt, J = 7.3, 6.5 Hz, 1 H), 4.00 (q, J = 6.6 Hz, 1 H), 4.24 (ddd, J = 5.4, 6.8, 7.1 Hz, 1 H), 4.54 (ddd, J = 1.8, 3.3, 6.7 Hz, 1 H), 5.32 (s, 1 H), 6.66 (d, J = 8.2 Hz, 1 H), 6.84 (d, J = 8.2 Hz, 1 H), 7.70 (d, J = 1.5 Hz, 1 H). IR (film): 2928, 1710, 1606, 1503, 1440, 1279, 1187, 1061 cm. HRMS-FAB: m/z calcd for C19H20NO5 [M + H]+: 342.1341; found: 342.1335.