RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217731
Highly Active and Magnetically Recoverable Pd-NHC Catalyst Immobilized on Fe3O4 Nanoparticle-Ionic Liquid Matrix for Suzuki Reaction in Water
Publikationsverlauf
Publikationsdatum:
27. August 2009 (online)
Abstract
Pd-NHC-ionic liquid matrix was immobilized into ionic liquid layers coated on the surface of Fe3O4. The immobilized Pd-NHC was used as a catalyst for Suzuki coupling. The catalyst exhibited both high catalytic activity and stability for the coupling between aryl bromide and arylboronic acid in water. This catalyst was simply recovered by an external permanent magnet and recycled without a significant loss in the catalytic activity.
Key words
heterogeneous catalysis - Suzuki reaction - palladium - magnetic nanoparticle - ionic liquids
- For reviews, see:
 - 1a 
             
            
Leadbeater NE.Marco M. Chem. Rev. 2002, 102: 3217 - 1b 
             
            
Yin L.Liebscher J. Chem. Rev. 2007, 107: 133 - 2a 
             
            
Paul S.Clark JH. Green Chem. 2003, 5: 635 - 2b 
             
            
Hardy JJE.Hubert S.Macquarrie DJ.Wilson AJ. Green Chem. 2004, 6: 53 - 2c 
             
            
Yang Q.Ma S.Li J.Xiao F.Xiong H. Chem. Commun. 2006, 2495 - 2d 
             
            
Sayah R.Glegola K.Framery E.Dufaud V. Adv. Synth. Catal. 2007, 349: 373 - 2e 
             
            
Qiu H.Sarkar SM.Lee D.-H.Jin M.-J. Green Chem. 2008, 10: 37 - 3a 
             
            
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 - 3b 
             
            
Dupont J.de Souza RF.Suarez PA.
Z. Chem. Rev. 2002, 102: 3667 - 3c 
             
            
Jain N.Kumar A.Chauhan S.Chauhan SMS. Tetrahedron 2005, 61: 1015 - 3d 
             
            
Akiyama T.Suzuki A.Fuchibe K. Synlett 2005, 1024 - 3e 
             
            
Ranu BC.Banerjee S.Jana R. Tetrahedron 2007, 63: 776 - 4 
             
            
Mehnert CP.Cook RA.Dispenziere NC.Afeworki M. J. Am. Chem. Soc. 2002, 124: 12932 - 5a 
             
            
Breitenlechner S.Fleck M.Müller TE.Suppan A. J. Mol. Catal. A 2004, 214: 175 - 5b 
             
            
Mehnert CP. Chem. Eur. J. 2005, 11: 50 - 5c 
             
            
Hagiwara H.Ko KH.Hoshi T.Suzuki T. Chem. Commun. 2007, 2838 - 6a 
             
            
Xu C.Xu K.Gu H.Zheng R.Liu H.Zhang X.Guo Z.Xu B. J. Am. Chem. Soc. 2004, 126: 9938 - 6b 
             
            
Kohler N.Fryxell GE.Zhang M. J. Am. Chem. Soc. 2004, 126: 7206 - 6c 
             
            
Berry CC.Curtis ASG. J. Phys. D: Appl. Phys. 2003, 36: R198 - 6d 
             
            
Park J.An K.Hwang Y.Park J.-G.Noh H.-J.Kim J.-Y.Park J.-H.Hwang N.-M.Hyeon T. Nat. Mater. 2004, 3: 891 - 7a 
             
            
Tsang SC.Caps V.Paraskevas I.Chadwick D.Thompsett D. Angew. Chem. Int. Ed. 2004, 43: 5645 - 7b 
             
            
Yoon T.-J.Lee W.Oh Y.-S.Lee J.-K. New J. Chem. 2003, 27: 227 - 7c 
             
            
Hu A.Yee TG.Lin W. J. Am. Chem. Soc. 2005, 127: 12486 - 7d 
             
            
Dalaigh OC.Corr AS.Gun’ko Y.Connon JS. Angew. Chem. Int. Ed. 2007, 46: 4329 - For a review, see:
 - 8a 
             
            
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 - 8b 
             
            
Crudden CM.Allen DP. Coord. Chem. Rev. 2004, 248: 2247 - 9a 
             
            
Navarro O.Kelly RA.Nolan SP. J. Am. Chem. Soc. 2003, 125: 16194 - 9b 
             
            
Navarro O.Kaur H.Mahjoor P.Nolan SP. J. Org. Chem. 2003, 69: 3173 - 9c 
             
            
Altenhoff G.Heska R. Org. Lett. 2004, 6: 3641 - 9d 
             
            
Wang AE.Xie JH.Wang LX.Zhou QL. Tetrahedron 2005, 61: 259 - 9e 
             
            
Lee S.-M.Yoon H.-J.Kim J.-H.Chung W.-H.Lee Y.-S. Pure Appl. Chem. 2007, 79: 1553 - 9f 
             
            
Qiu H.Sarkar SM.Lee D.-H.Jin M.-J. Green Chem. 2008, 10: 37 - 10a 
             
            
Herrman WA.Elison M.Fisher J.Kocher C.Artus GRJ. Angew. Chem. Int. Ed. 1995, 34: 2371 - 10b 
             
            
Deshmukh RR.Rajagopal R.Srinivasan KV. Chem. Commun. 2001, 1544 - 10c 
             
            
Kim J.-H.Kim J.-W.Shokouhimehr M.Lee Y.-S. J. Org. Chem. 2005, 70: 6714 - 11 
             
            
Brenna S.Posset T.Furrer J.Blumel J. Chem. Eur. J. 2006, 12: 2880 - For reviews, see:
 - 14a 
             
            
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 14b 
             
            
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 - 14c 
             
            
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 - 14d 
             
            
Phan NTS.Sluys MVD.Jones CW. Adv. Synth. Catal. 2006, 348: 609 - 15a 
             
            
Zapf A.Ehrentraut A.Beller M. Angew. Chem. Int. Ed. 2000, 39: 4153 - 15b 
             
            
Bedford RB.Cazin CSJ.Hazelwood SL. Angew. Chem. Int. Ed. 2002, 41: 4120 - 15c 
             
            
Liu L.Zhang Y.Wang Y. J. Org. Chem. 2005, 70: 6122 - 15d 
             
            
Churruca F.SanMartin R.Inés B.Tellitu I.Domínguez E. Adv. Synth. Catal. 2006, 348: 1836 - 15e 
             
            
Maegawa T.Kitamira Y.Udzu T.Sakurai A.Tanaka A.Kobayashi Y.Endo K.Bora U.Kurita T.Kozaki A.Monguchi Y.Sajiki H. Chem. Eur. J. 2007, 13: 5937 - 15f 
             
            
Lee D.-H.Jung J.-Y.Lee IM.Jin M.-J. Eur. J. Org. Chem. 2008, 356 - 15g 
             
            
Billingsley KL.Buchwald SL. Angew. Chem. Int. Ed. 2008, 47: 4695 - 15h 
             
            
Phan NTS.Styring P. Green Chem. 2008, 10: 1055 - 15i 
             
            
Suzuki K.Sawaki T.Hori Y.Kobayashi T. Synlett 2008, 1809 - 15j 
             
            
Zotto AD.Amoroso F.Baratte W.Rigo P. Eur. J. Org. Chem. 2009, 110 
References and Notes
         Surface Modification
            of Nano-Fe
         
            3
            
         O
         
            4
            
         
To a solution of 1-(3-trimethoxysilylpropyl)-3-methyl-imidazolium
         chloride (0.28 g, 1.0 mmol) in toluene was added nano-sized Fe3O4 (Aldrich,
         1.0 g). The mixture was stirred at 100 ˚C for
         10 h. After cooling, the nano-Fe3O4 was magnetically
         separated from reaction mixture. Modified Fe3O4 2 was washed with CH2Cl2 several
         times and dried at 60 ˚C under vacuum. Elemental
         analysis and weight gain showed that 0.67 mmol of 1-(3-trimethoxysilylpropyl)-3-methylimidazolium
         chloride was anchored on 1.0 g of 2.
         Immobilization
            of NHC-Pd onto Modified Nano-Fe
         
            3
            
         O
         
            4
             2
            To a solution of Pd-NHC 1 (195 mg, 0.29 mmol) and 
1-butyl-3-methylimidazolium
         hexafluorophosphate (165 mg, 0.58 mmol) in CH2Cl2 (2
         mL) modified Fe3O4 2 (1.0
         g) was added. The mixture was sonicated for 15 min at r.t., and then
         CH2Cl2 was slowly removed under reduced pressure. The
         resulting powder was washed with Et2O and dried under vacuum
         at 60 ˚C to give Pd-NHC@Fe3O4-IL 3 (1.21 g). The Pd content of 0.17 mmol/g
         was measured by inductively coupled plasma (ICP) analysis.
         General Procedure
            for the Suzuki Coupling Reaction
         
Aryl halide (1.0
         mmol), arylboronic acid (1.2 mmol), K3PO4 (424
         mg, 2.0 mmol), TBAB (161 mg, 0.5 mmol), dodecane (40 mg, internal
         standard), and catalyst 3 (30 mg, 0.5 mol%) were
         mixed in H2O (2.0 mL). The mixture was stirred at 75 ˚C
         in an air atmosphere. The reaction was periodically monitored by
         GC. After magnetic separation of the catalyst, the organic material
         was twice extracted with Et2O. The organic phase was
         dried over MgSO4, and the solvent was evaporated under
         reduced pressure. The crude was analyzed by GC/GC-MS. The
         product was purified by short column chromatography on silica gel.
Reuse of Pd-NHC@Fe 3 O 4 -IL 3 In the recycling experiment the reaction was performed by using a mixture of 4-bromoanisole (187 mg, 1.0 mmol), phenylboronic acid (134 mg, 1.2 mmol), K3PO4 (424 mg, 2.0 mmol), TBAB (161 mg, 0.5 mmol), and catalyst 3 (30 mg, 0.5 mol%) in H2O (2.0 mL) at 75 ˚C for 0.7 h. After completion of the reaction, the catalyst was magnetically separated from the solution. The solution was worked up as described above. The separated catalyst was successively reused for the next reaction without any pre-treatment.