RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217701
Chemoselective Isomerization of Secondary-Type Propargylic Alcohols to Propargylic/Allenic Bromides, and Brominated Dienes with Appel-Type Reaction Conditions
Publikationsverlauf
Publikationsdatum:
16. Juli 2009 (online)
Abstract
Herein is described the chemoselective isomerization of secondary-type propargylic alcohols to allenic bromides, propargylic bromides and brominated dienes under Appel-type reaction conditions containing Ph3P, CBr4 and additives.
Key words
Appel reaction - propargylic alcohol - allene - diene - isomerization
- 1 
             
            
Hoffmann-Röder A.Krause N. Angew. Chem. Int. Ed. 2004, 43: 1196 - For selected recent books and reviews for allene chemistry, see:
 - 2a 
             
            
Krause N.Hashmi ASK. In Modern Allene Chemistry Vol. 1: Wiley-VCH; Weinheim: 2004. - 2b 
             
            
Krause N.Hashmi ASK. In Modern Allene Chemistry Vol. 2: Wiley-VCH; Weinheim: 2004. - 2c 
             
            
Kwong CK.-W.Fu MY.Lam CS.-L.Toy PH. Synthesis 2008, 2307 - 2d 
             
            
Ma S. Chem. Rev. 2005, 105: 2829 - 2e 
             
            
Miesch M. Synthesis 2004, 746 - 2f 
             
            
Krause N.Hoffmann-Röder A. Tetrahedron 2004, 60: 11671 - 2g 
             
            
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 - 3 
             
            
Sakai N.Hirasawa M.Konakahara T. Tetrahedron Lett. 2005, 46: 6407 - 4a 
             
            
Das B.Damodar K.Bhunia N.Shashikanth B. Tetrahedron Lett. 2009, 50: 2072 - 4b 
             
            
Das B.Kanth BS.Reddy KR.Satyalakshmi G.Kumar RA. Chem. Lett. 2008, 37: 512 - 5 
             
            
Appel R. Angew. Chem., Int. Ed. Engl. 1975, 14: 801 - 6a 
             
            
Alexakis A.Marek I.Mangeney P.Normant JF.
J. Am. Chem. Soc. 1990, 112: 8042 - 6b 
             
            
Marek I.Mangeney P.Alexakis A.Normant JF. Tetrahedron Lett. 1986, 27: 5499 - 6c 
             
            
Rona P.Crabbe P. J. Am. Chem. Soc. 1969, 91: 3289 - 6d 
             
            
Rona P.Crabbe P. J. Am. Chem. Soc. 1968, 90: 4733 - 7a 
             
            
Keinan E.Bosch E. J. Org. Chem. 1986, 51: 4006 - 7b 
             
            
Elsevier CJ.Stehouwer PM.Westmijze H.Vermeer P. J. Org. Chem. 1983, 48: 1103 - 8a 
             
            
Moreau J.-L.Gaudemar M. J. Organomet. Chem. 1976, 108: 159 - 8b 
             
            
Alexakis A.Commercon A.Villiéras J.Normant JF. Tetrahedron Lett. 1976, 2313 - 9 
             
            
Wenkert E.Leftin MH.Michelotti EL. J. Org. Chem. 1985, 50: 1122 - 10a 
             
            
Riveiros R.Rodriguez D.Perez Sestelo J.Sarandeses LA. Org. Lett. 2006, 8: 1403 - 10b 
             
            
Yoshida M.Gotou T.Ihara M. Tetrahedron Lett. 2004, 45: 5573 - 10c 
             
            
Lee K.Seomoon D.Lee PH. Angew. Chem. Int. Ed. 2002, 41: 3901 - 10d 
             
            
Pasto DJ.Chou S.-K.Waterhouse A.Shults RH.Hennion GF. J. Org. Chem. 1978, 43: 1385 - 11a 
             
            
Sanz R.Miguel D.Martinez A.Alvarez-Gutierrez JM.Rodriguez F. Org. Lett. 2007, 9: 727 - 11b 
             
            
Huang W.Wang J.Shen Q.Zhou X. Tetrahedron 2007, 63: 11636 - 11c 
             
            
Ishikawa T.Aikawa T.Mori Y.Saito S. Org. Lett. 2003, 5: 51 - 11d 
             
            
Ishikawa T.Okano M.Aikawa T.Saito S. J. Org. Chem. 2001, 66: 4635 - 12a 
             
            
Myers AG.Zheng B. J. Am. Chem. Soc. 1996, 118: 4492 - 12b 
             
            
Corey EJ.Boaz NW. Tetrahedron Lett. 1984, 25: 3055 - 12c 
             
            
Parker KA.Petraitis JJ. Tetrahedron Lett. 1977, 4561 - 14a 
             
            
Guo C.Lu X. J. Chem. Soc., Perkin Trans. 1 1993, 1921 - 14b 
             
            
Trost BM.Kazmaier U. J. Am. Chem. Soc. 1992, 114: 7933 - 14c 
             
            
Trost BM.Schmidt T. J. Am. Chem. Soc. 1988, 110: 2301 - 14d 
             
            
Lu X.Ma D. Pure Appl. Chem. 1990, 62: 723 - 15 When the same reaction was conducted
            with CCl4 instead of CBr4, the corresponding
            chlorinated allene derivative was obtained in 40% yield.
            For a selected paper on the SN2-type chlorination of
            a primary alcohol using CCl4 and PPh3, see:  
            
Lee JB.Downie IM. Tetrahedron 1967, 23: 359 - 18a 
             
            
Slagle JD.Huang TTS.Franzus B. J. Org. Chem. 1981, 46: 3526 - 18b 
             
            
Jones LA.Sumner CE.Franzus B.Huang TTS.Snyder EI. J. Org. Chem. 1978, 43: 2821 
References and Notes
General Procedure for the Synthesis of Allene Derivatives 2: CBr4 (331 mg, 1.0 mmol), Ph3P (262 mg, 1.0 mmol), propargylic alcohol 1 (0.50 mmol), i-Pr2NEt (129 mg, 1.0 mmol), P(n-Bu)3 (10 mg, 0.05 mmol), and a freshly distilled toluene (1 mL) were successively added into a screw-capped vial, and the vial was sealed with a cap containing a PTFE septum. The reaction mixture was stirred at 100 ˚C, and monitored by TLC until the propargylic alcohol 1 was consumed. To quench the reaction, H2O (2 mL) was added to the mixture. The mixture was extracted with CH2Cl2 (3 ×), and the combined organic extracts were dried over Na2SO4, filtered, and then evaporated under reduced pressure. The crude product was purified by silica gel chromatography(hexane) to produce the allene derivative 2, and if necessary, was further purified by a recycling preparative HPLC equipped with a GPC column (chloroform as an eluent). Spectral data for selected compound: 1-(3-Bromo-1,2-nonadien-1-yl)benzene (2a): pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 0.86 (t, 3 H, J = 7.2 Hz), 1.24-1.38 (m, 6 H), 1.50 (quint, 2 H, J = 7.2 Hz), 2.52 (td, 2 H, J = 7.2, 3.0 Hz), 6.19 (t, 1 H, J = 3.0 Hz), 7.23-7.27 (m, 1 H), 7.32-7.33 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 13.9, 22.5, 27.9, 28.2, 31.4, 38.0, 96.1, 100.3, 127.7, 128.1, 128.7, 133.0, 199.8. MS (FAB): m/z (%) = 281 (100) [M+], 279 (40) [M+]. HRMS (FAB): m/z calcd for C15H20Br: 279.0748; found: 279.0726.
16
         General Procedure
            for the Synthesis of Diene Derivatives 3: The same procedure
         as above without i-Pr2NEt
         gave the diene derivative 3. However, formation
         of a quite small amount of the (1Z,3E)-diene along with the (1E,3E)-diene separable
         by column chromatography was observed by NMR. Spectral data for
         selected compound: [(1E,3E)-3-Bromo-1,3-nonadien-1-yl]benzene
         (3a): pale brown oil. ¹H NMR
         (300 MHz, CDCl3): δ = 0.88 (t, 3 H, J = 7.2 Hz), 1.27 (m, 3 H),
         1.35 (m, 1 H), 1.47 (m, 2 H), 2.35 (q, 2 H, J = 7.2 Hz),
         6.08 (t, 1 H, J = 7.2 Hz), 6.73
         (d, 1 H, J = 15.0 Hz), 6.89 (d,
         1 H, J = 15.0 Hz), 7.23 (m,
         1 H), 7.30 (m, 2 H), 7.42 (m, 2 H). ¹³C
         NMR (75 MHz, CDCl3): δ = 13.9, 22.4,
         28.1, 31.4, 31.7, 126.7, 126.9, 127.7, 127.9, 128.6, 128.7, 132.1,
         135.3. MS (EI): m/z = 279 [M+].
         HRMS (FAB): m/z calcd
         for C15H20Br: 279.0748; found: 279.0728. Stereochemistry (1E,3E) of the
         isolated compound was determined by 
the chemical shift
         and coupling constant of the related compound. Specific peaks derived
         from (1Z,3E)-diene 3a were observed by ¹H
         NMR. ¹H NMR: δ = 5.87 (t,
         1 H, J = 7.2 Hz), 6.76 (d, 2
         H, J = 15.0 Hz), 6.94 (d, 1
         H, J = 15.0 Hz). Other peaks
         overlapped with those of the (1E,3E)-diene.
We have no clear cause for the low yield of diene derivative 3; however, formation of several complex products, which were probably derived from the starting propargylic alcohol, was observed by an NMR measurement.