References and Notes
<A NAME="RG12909ST-1A">1a</A>
Crevisy C.
Wietrich M.
Le Boulaire V.
Uma R.
Grée R.
Tetrahedron Lett.
2001,
42:
395
<A NAME="RG12909ST-1B">1b</A>
Uma R.
Gouault N.
Crevisy C.
Grée R.
Tetrahedron Lett.
2003,
44:
6187
<A NAME="RG12909ST-2A">2a</A>
Uma R.
Davies M.
Crevisy C.
Grée R.
Tetrahedron Lett.
2001,
42:
3069
<A NAME="RG12909ST-2B">2b</A>
Wang M.
Li CJ.
Tetrahedron Lett.
2002,
43:
3589
<A NAME="RG12909ST-2C">2c</A>
Wang M.
Li CJ.
Eur. J. Org. Chem.
2003,
998
<A NAME="RG12909ST-2D">2d</A>
Wang M.
Li CJ.
Org. Lett.
2003,
5:
657
<A NAME="RG12909ST-3A">3a</A> Another
process, employing activation of ruthenium catalysts by t-BuOK and involving ruthenium enolates
as intermediates, has been proposed recently, see:
Bartoszewicz A.
Livendahl M.
Martin-Matute B.
Chem. Eur. J.
2008,
14:
10547 ; and references therein
<A NAME="RG12909ST-3B">3b</A> For early transition-metal-mediated
isomerizations of allylic alcoholates, see:
Gazzard LJ.
Motherwell WB.
Sandham DA.
J. Chem. Soc., Perkin Trans. 1
1999,
979
<A NAME="RG12909ST-4">4</A>
Cuperly D.
Petrignet J.
Crévisy C.
Grée R.
Chem. Eur. J.
2006,
12:
3261
<A NAME="RG12909ST-5A">5a</A>
Cuperly D.
Crevisy C.
Grée R.
J. Org. Chem.
2003,
68:
6392
<A NAME="RG12909ST-5B">5b</A>
Petrignet J.
Roisnel T.
Grée R.
Tetrahedron Lett.
2006,
47:
7745
For reviews on the transition-metal-mediated
isomerization of allylic alcohols, see:
<A NAME="RG12909ST-6A">6a</A>
Uma R.
Crevisy C.
Grée R.
Chem.
Rev.
2003,
103:
27
<A NAME="RG12909ST-6B">6b</A>
Van der Drift RC.
Bouwman E.
Drent E.
J. Organomet. Chem.
2002,
650:
1 ; and references therein
<A NAME="RG12909ST-7">7</A> For detailed computational studies
in the case of the iron-mediated isomerization, see:
Branchadell V.
Crevisy C.
Grée R.
Chem. Eur. J.
2003,
9:
2062
<A NAME="RG12909ST-8A">8a</A>
Branchadell V.
Crevisy C.
Grée R.
Chem. Eur. J.
2004,
10:
5795
<A NAME="RG12909ST-8B">8b</A>
Dickerson TJ.
Lovell T.
Meijler
MM.
Noodleman L.
Janda KD.
J. Org. Chem.
2004,
69:
6603
<A NAME="RG12909ST-9A">9a</A>
Bahmanyar S.
Houk KN.
J.
Am. Chem. Soc.
2001,
123:
12911
<A NAME="RG12909ST-9B">9b</A>
Zhang X.
Houk KN.
J. Org. Chem.
2005,
70:
9712
<A NAME="RG12909ST-9C">9c</A>
Gunaydin H.
Houk KN.
J. Am. Chem. Soc.
2008,
130:
15232 ; and references therein
<A NAME="RG12909ST-10A">10a</A>
Petrignet J.
Prathap I.
Chandrasekhar S.
Yadav JS.
Grée R.
Angew. Chem. Int. Ed.
2007,
46:
6297
<A NAME="RG12909ST-10B">10b</A>
Petrignet J.
Roisnel T.
Grée R.
Chem.
Eur. J.
2007,
13:
7374
<A NAME="RG12909ST-11">11</A>
Göksu S.
Altundas R.
Sütbeyaz Y.
Synth.
Commun.
2000,
30:
1615
<A NAME="RG12909ST-12">12</A>
The geometries of allyl alcohol 5, of Z and E-enols and of the aldolization transition
states were optimized using the B3LYP¹7-¹9 density
functional method with the 6-31G(d) basis set. Harmonic vibrational
frequencies of all structures were calculated in order to fully
characterize their energy minima or transition states. All calculations
were performed using the Gaussian-03 program.²0 The
most stable conformers of 5, and Z and E-enols
were determined through a Montecarlo conformational search²¹ using
the MMFF force field²² implemented
in the Macromodel program.²³
<A NAME="RG12909ST-13">13</A>
The crystal structure corresponding
to adduct 12 has been deposited at the
Cambridge Crystallographica Data Centre and allocated the deposition
number CCDC 715243. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RG12909ST-14A">14a</A>
Grubbs RH.
Adv. Synth. Cat.
2007,
349:
34
<A NAME="RG12909ST-14B">14b</A>
Chatterjee AK.
Choi T.-L.
Sanders DP.
Grubbs
RH.
J.
Am. Chem. Soc.
2003,
125:
11360 ;
and references therein
<A NAME="RG12909ST-15">15</A>
Procedure for
Aldolization using an Fe(CO)
5
Catalyst: CAUTION: all reactions involving
Fe(CO)5 must be carried out under a well ventilated hood.
At the end of the reaction the residue of Fe(CO)5 can
be destroyed by addition of strong oxidizing agents such as Ce(NH4)2 (NO3)6 or
FeCl3. To a solution of a 93:7 mixture of lactol 4 and alcohol 5 (1 mmol)
in anhydrous THF (10 mL) in a 25 mL pyrex flask, was added Fe(CO)5 (7 µL,
5 %mol) at r.t. under nitrogen. The mixture was irradiated
with a Philips HPK 125W lamp until disappearance of starting material
was observed (1 h). The reaction mixture was filtered through silica
gel (diameter 1 cm, length 2 cm) and purified by column chromatography
(CH2Cl2-Et2O, 9:1) to
give aldol product 6 [100 mg,
65%; R
f
= 0.1
(CH2Cl2-Et2O, 9:1)] and
ketone 10 [20 mg, 12%; R
f
= 0.5
(CH2Cl2-Et2O, 9:1)].
Spectral data for aldol 6: ¹H
NMR (500 MHz, C6D6): δ = 1.16
(d, J = 6.8
Hz, 2 H), 1.20-1.38 (m, 3 H), 1.44-1.57
(m, 1 H), 1.93 (br, 1 H), 2.10 (quin, J = 6.3 Hz,
1 H), 2.21 (m, 1 H), 2.38 (d, J = 12.1 Hz,
1 H), 2.77 (t, J = 5.4
Hz, 1 H), 3.69 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 10.0, 25.3,
26.9, 33.0, 42.0, 43.1, 50.9, 76.7, 212.7. HRMS (EI): m/z [M+] calcd
C9H14O2: 154.09938; found: 154.0997.
<A NAME="RG12909ST-16">16</A>
Procedure for
Synthesis of Enone 7: To an ice-cold solution of aldol 6 (540 mg, 3.5 mmol), and Et3N
(0.98 mL, 2 equiv) in CH2Cl2, was added MsCl
(410 µL, 1.5 equiv) at 0 ˚C. After being
stirred at r.t. for 1 h, the reaction was cooled to 0 ˚C
and DBU (626 µL, 1.2 equiv) was added and the solution
was stirred at r.t. overnight. The mixture was diluted with CH2Cl2 and
H2O, the organic phase was separated and the aqueous
phase was extracted with CH2Cl2. The combined
organic phases were dried over MgSO4, filtered and concentrated
under vacuum to afford a residue, which was purified by chromatography
on silica gel (pentane-Et2O, 90:10) to afford
enone 7 as a colorless oil (328 mg, 69%). ¹H
NMR (300 MHz, CDCl3): δ = 1.37-0.48 (m,
4 H), 1.6 (d, J = 1.4
Hz, 3 H), 1.8 (m, 1 H), 1.9 (d, J = 12.0
Hz, 1 H), 1.9-2.1 (m, 2 H), 2.8 (quin, J = 4.1 Hz, 1 H),
2.9 (dd, J = 7.2,
6.9 Hz, 1 H), 6.9 (dt, J = 6.9,
1.5 Hz, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 15.0, 24.4, 29.2,
37.5, 40.4, 50.1, 133.3, 151.4, 203.9. HRMS (EI): m/z [M+] calcd for
C9H12O: 136.08882; found: 136.0889.
<A NAME="RG12909ST-17">17</A>
Becke AD.
J.
Chem. Phys.
1993,
98:
5648
<A NAME="RG12909ST-18">18</A>
Lee CT.
Yang WT.
Parr RG.
Phys.
Rev. B: Condens. Matter Mater. Phys.
1988,
37:
785
<A NAME="RG12909ST-19">19</A>
Stephens PJ.
Devlin FJ.
Chabalowski CF.
Frisch
MJ.
J.
Phys. Chem.
1994,
98:
11623
<A NAME="RG12909ST-20">20</A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski
VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision
E.01
Gaussian, Inc.;
Wallingford CT:
2004.
<A NAME="RG12909ST-21A">21a</A>
Chang G.
Guida WC.
Still WC.
J. Am. Chem. Soc.
1989,
111:
4379
<A NAME="RG12909ST-21B">21b</A>
Chang G.
Guida WC.
Still WC.
J.
Am. Chem. Soc.
1990,
112:
1429
<A NAME="RG12909ST-22">22</A>
Halgren TA.
J.
Comput. Chem.
1996,
17:
490
<A NAME="RG12909ST-23A">23a</A>
Mohamadi F.
Richards NGJ.
Guida WC.
Liskamp R.
Lipton M.
Caufield C.
Chang G.
Hendrickson T.
Still WC.
J.
Comput. Chem.
1990,
11:
440
<A NAME="RG12909ST-23B">23b</A>
MacroModel 7.0; http://www.schrodinger.com.