Subscribe to RSS
DOI: 10.1055/s-0029-1217518
Solvent-Free Synthesis of Alkylthiazolium-Based Ionic Liquids and their Use as Catalysts in the Intramolecular Stetter Reaction
Publication History
Publication Date:
25 June 2009 (online)

Abstract
The first synthesis of alkylthiazolium-based ionic liquids under ‘green chemistry’ conditions is described. Thiazolium salts and triethylamine have been found to catalyze efficiently the intramolecular Stetter reaction, giving excellent yields within very short reaction times using solvent-free microwave activation conditions.
Key words
solvent-free reaction - microwave activation - ionic liquids - thiazolium salts - Stetter reaction
- For selective reviews, see:
- 1a
Welton T. Chem. Rev. 1999, 99: 2071Reference Ris Wihthout Link - 1b
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772Reference Ris Wihthout Link - 1c
Hagiwara R.Ito Y. J. Fluorine Chem. 2000, 105: 221Reference Ris Wihthout Link - 1d
De Souza Dupont RF.Suarez PA. Chem. Rev. 2002, 102: 3667Reference Ris Wihthout Link - 1e
Rogers RD.Seddon KR. Ionic Liquids Industrial Applications to Green Chemistry ACS Symposium Series 818; Washington: 2001.Reference Ris Wihthout Link - 1f
Wasserscheid P.Welton T. Ionic Liquids in Synthesis 2nd ed.: Wiley-VCH; Weinheim: 2008.Reference Ris Wihthout Link - 1g
Rogers RD.Seddon KR. Ionic Liquids as Green Solvents. Progress and Prospects Oxford University Press; USA Washington: 2003.Reference Ris Wihthout Link - 1h
Song CE. Chem. Commun. 2004, 1033Reference Ris Wihthout Link - 1i
Jain N.Kumar A.Chauhan S.Chauhan SMS. Tetrahedron 2005, 61: 1015Reference Ris Wihthout Link - 1j
Malhotra SV.Kumar V.Parmar VS. Curr. Org. Synth. 2007, 4: 370Reference Ris Wihthout Link - 1k
Durand J.Teuma E.Gómez M. Comptes Rendus Chimie 2007, 10: 152Reference Ris Wihthout Link - 1l
Parvulescu VI.Hardacre C. Chem. Rev. 2007, 107: 2615Reference Ris Wihthout Link - 1m
Plechkova NV.Seddon KR. Chem. Soc. Rev. 2008, 37: 123Reference Ris Wihthout Link - 1n
Toma S.Meciarová M.Šebesta R. Eur. J. Org. Chem. 2009, 3: 321Reference Ris Wihthout Link - 2a
Baldwin JE.Branz SE.Walker JA. J. Org. Chem. 1977, 42: 4142Reference Ris Wihthout Link - 2b
Yen SK.Koh LL.Hahn FE.Huynh HV.Hor ATS. Organometallics 2006, 25: 5105Reference Ris Wihthout Link - 2c
Davis JS.Forrester KJ. Tetrahedron Lett. 1999, 40: 1621Reference Ris Wihthout Link - For recent reviews on microwave chemistry, see:
- 3a
De la Hoz A.Diaz-Ortis A.Moreno A.Langa F. Eur. J. Org. Chem. 2000, 3659Reference Ris Wihthout Link - 3b
Alterman M.Hallberg A. J. Org. Chem. 2000, 65: 7984Reference Ris Wihthout Link - 3c
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199Reference Ris Wihthout Link - 3d
Lidström P.Tierney J.Wathey P.Westman J. Tetrahedron 2001, 57: 9225Reference Ris Wihthout Link - 3e
Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light CEM Publishing; Matthews NC: 2002.Reference Ris Wihthout Link - 3f
Microwaves
in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2006.Reference Ris Wihthout Link - 3g
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 3h
Ermolat’ev DS.Gimenez VN.Babaev EV.Van der Eycken E. J. Comb. Chem. 2006, 8: 659Reference Ris Wihthout Link - 4a
Loupy A.Petit A.Hamelin J.Texier-Boullet F.Jacquault P.Mathé P. Synthesis 1998, 1213Reference Ris Wihthout Link - 4b
Varma RS. Green Chem. 1999, 1: 43Reference Ris Wihthout Link - 4c
Tanaka K. Solvent-free Organic Synthesis Wiley-VCH; Weinheim: 2003.Reference Ris Wihthout Link - 4d
Polshettiwar V.Varma RS. Acc. Chem. Res. 2008, 41: 629Reference Ris Wihthout Link - 5a
Varma RS.Namboodiri VV. Chem. Commun. 2001, 643Reference Ris Wihthout Link - 5b
Varma RS.Namboodiri VV. Pure Appl. Chem. 2001, 73: 1309Reference Ris Wihthout Link - 5c
Khadilkar BM.Rebeiro GL. Org. Proc. Res. Dev. 2002, 6: 826Reference Ris Wihthout Link - 5d
Law MC.Wong KY.Chan TH. Green Chem. 2002, 4: 328Reference Ris Wihthout Link - 5e
Varma RS.Namboodiri VV. Chem. Commun. 2002, 342Reference Ris Wihthout Link - 5f
Dubreuil JF.Famelart MH.Bazureau JP. Org. Proc. Res. Dev. 2002, 6: 374Reference Ris Wihthout Link - 5g
Varma RS.Namboodiri VV. Tetrahedron Lett. 2002, 43: 5381Reference Ris Wihthout Link - 5h
Deetlefs M.Seddon KS. Green Chem. 2003, 5: 181Reference Ris Wihthout Link - 6
Vo-Thanh G.Pégot B.Loupy A. Eur. J. Org. Chem. 2004, 1112 - 7a
Lévêque JM.Estager J.Draye M.Boffa L.Cravotto G.Bonrath W. Monatsh. Chem. 2007, 138: 1103Reference Ris Wihthout Link - 7b
Cravotto G.Calcio-Gaudino E.Boffa L.Lévêque JM.Estager J.Bonrath W. Molecules 2008, 13: 149Reference Ris Wihthout Link - 8
Suarez PAZ.Dullius JEL.Einloft S.Souza RF.Dupont J. Polyhedron 1996, 15: 1217 - 9a
Stetter H.Schreckenberg M. Angew. Chem. Int. Ed. Engl. 1973, 12: 81Reference Ris Wihthout Link - 9b
Stetter H. Angew. Chem. Int. Ed. Engl. 1976, 15: 639Reference Ris Wihthout Link - 9c
Stetter H.Kuhlmann H. Org. React. 1991, 40: 407Reference Ris Wihthout Link - For recent reports on the Stetter reaction, see:
- 10a
Raghavan S.Anuradha K. Tetrahedron Lett. 2002, 43: 5181Reference Ris Wihthout Link - 10b
Enders D.Kallfass U. Angew. Chem. Int. Ed. 2002, 41: 1743Reference Ris Wihthout Link - 10c
Nair V.Bindu S.Sreekuma V. Angew. Chem. Int. Ed. 2004, 43: 5130Reference Ris Wihthout Link - 10d
Cesar V.Bellemin-Laponnaz S.Gade LH. Chem. Soc. Rev. 2004, 33: 619Reference Ris Wihthout Link - 10e
Barrett AGM.Love AC.Tedeschi L. Org. Lett. 2004, 6: 3377Reference Ris Wihthout Link - 10f
Enders D.Belensiefer T. Acc. Chem. Res. 2004, 37: 534Reference Ris Wihthout Link - 10g
Mattson AE.Bharadwaj AR.Scheidt KA. J. Am. Chem. Soc. 2004, 126: 2314Reference Ris Wihthout Link - 10h
Anjaiah S.Chandrasekhar S.Grée R. Adv. Synth. Catal. 2004, 346: 1329Reference Ris Wihthout Link - 10i
Nakamura T.Hara O.Tamura T.Makino K.Hamada Y. Synlett 2005, 155Reference Ris Wihthout Link - 10j
Christmann M. Angew. Chem. Int. Ed. 2005, 44: 2632Reference Ris Wihthout Link - 10k
Zhou ZZ.Ji FQ.Cao M.Yang GF. Adv. Synth. Catal. 2006, 348: 1826Reference Ris Wihthout Link - 10l
Webber P.Krische MJ. Chemtracts: Org. Chem. 2007, 19: 262Reference Ris Wihthout Link - 10m
Read de Alaniz J.Kerr MS.Moore L.Rovis T.
J. Org. Chem. 2008, 73: 2033Reference Ris Wihthout Link - 11
Ciganek E. Synthesis 1995, 1311
References and Notes
General Procedure
for the Solvent-Free N-Alkylation of Thiazole under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-iodoalkane 2 (1.5 mmol) was irradiated
(CEM Discover reactor) at 150 ˚C for the appropriate
time (see Table
[¹]
).
The reaction mixture was brought to room temperature and washed
with Et2O (2 × 10 mL). The
crude product was dried under reduced pressure to afford a yellow
powder which did not need further purification.
1-Butylthiazolium Iodide
M.p.
101 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.99
(3 H, t, J = 7.5
Hz), 1.40-1.47 (2 H, m), 2.00-2.05 (2 H,
m), 4.83 (2 H, t, J = 7.5
Hz), 8.28 (1 H, d, J = 2.6
Hz), 8.34 (1 H, d, J = 3.4 Hz), 10.95 (1 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 13.9,
19.8, 32.9, 56.5, 127.5, 137.0, 159.6. IR (KBr): 3434, 3020, 2945,
1989, 1829, 1637, 1543, 1434, 1256, 1144, 952, 861, 639 cm-¹.
HRMS (EI): m/z [M+] calcd
for C7H12NS: 142.0685; found: 142.0690.
1-Octylthiazolium Iodide
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ =0.74
(3 H, t, J = 7.2
Hz), 1.21-1.26 (10 H, m), 1.91-1.96 (2 H,
m), 4.73 (2 H, t, J = 7.1
Hz), 8.4 (1 H, d, J = 3.4
Hz), 8.54 (1 H, d, J = 3.8
Hz), 10.69 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.6, 31.6, 56.3, 127.8, 136.9, 158.6. IR (NaCl): 3445,
3046, 2926, 2855, 1621, 1551, 1463, 1422, 1262, 1154, 907, 833,
749, 634 cm-¹. HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1313; found: 198.1316.
1-Decylthiazolium Iodide
M.p.
39 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.79
(3 H, t, J = 6.1
Hz), 1.17-1.28 (14 H, m), 1.96-1.97 (2 H,
m), 4.76 (2 H, t, J = 7.0
Hz), 8.42 (1 H, d, J = 1.8
Hz), 8.54 (1 H, d, J = 3.2
Hz), 10.72 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.7, 22.1, 25.6,
28.5, 28.7, 28.8, 28.9, 30.2, 31.3, 55.8, 127.5, 136.6, 158.2. IR
(KBr): 3435, 3078, 2922, 2852, 1555, 1471, 1370, 1264, 1150, 905,
812, 630 cm-¹. HRMS (EI): m/z [M+] calcd
for C13H24NS: 226.1625; found: 226.1629.
1-Dodecylthiazolium Iodide
M.p.
92 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.86
(3 H, t, J = 7.0
Hz), 1.27-1.34 (18 H, m), 1.99-2.04 (2 H,
m), 4.80 (2 H, t, J = 7.5
Hz), 8.41 (1 H, d, J = 3.4
Hz), 8.47 (1 H, d, J = 3.6
Hz), 10.79 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.6, 26.1,
28.9, 29.2, 29.3, 29.4, 29.5, 29.6, 30.6, 31.8, 56.3, 127.6, 136.6,
159.0. IR (KBr): 3096, 3079, 2916, 2850, 1556, 1472, 1258, 1149,
908, 811 cm-¹. HRMS (EI): m/z [M+] calcd
for C15H28NS: 254.1933; found: 254.1942.
General Procedure for Solvent-Free ‘One-Pot’ Preparation
of Alkylthiazolium 4 from 1 under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol),
1-iodooctane (360 mg, 1.5 mmol) and alkaline salt MY (1.5 mmol),
was irradiated (CEM Discover reactor) at 150 ˚C
for 1.3 h (see Table
[²]
).
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) were added. After filtration, the solvent was evaporated. The crude
product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil which did not need further purification.
1-Octylthiazolium Trifluoromethanesulfonate
¹H
NMR (250 MHz, CDCl3): δ = 0.84 (3 H,
t, J = 4.8
Hz), 1.23-1.32 (10 H, m), 1.96-2.02 (2 H,
m), 4.68 (2 H, t, J = 7.3
Hz), 8.29 (1 H, d, J = 3.8
Hz), 8.38 (1 H, d, J = 3.8 Hz),
10.42 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.5, 31.6, 56.1, 127.1, 137.0, 158.2. IR (NaCl): 3500,
3084, 2928, 2858, 1633, 1553, 1468, 1258, 1225, 1162, 1030, 914,
836, 757, 639 cm-¹. HRMS (EI):
m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1316.
1-Octylthiazolium Hexafluorophosphate
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.83
(3 H, t, J = 6.0
Hz), 1.22-1.31 (10 H, m), 1.98-2.02 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.36 (1 H, d, J = 2.6
Hz), 8.44 (1 H, d, J = 3.8
Hz), 10.54 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.9, 22.3, 25.8,
28.7, 28.8, 30.5, 31.4, 56.0, 127.6, 136.7, 158.3. IR (NaCl): 3440,
3084, 2929, 2856, 1602, 1553, 1469, 1174, 1012, 905, 750 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1309; found: 198.1316.
1-Octylthiazolium Tetrafluoroborate
¹H
NMR (300 MHz, CDCl3): δ = 0.83 (3 H,
t, J = 7.1
Hz), 1.28-1.32 (10 H, m), 1.99-2.03 (2 H,
m), 4.79 (2 H, t, J = 7.5
Hz), 8.42 (1 H, d, J = 3.4
Hz), 8.52 (1 H, d, J = 3.4 Hz),
10.57 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.3, 22.8, 26.4,
29.1, 29.2, 30.8, 31.9, 56.6, 127.2, 137.2, 158.6. IR (NaCl): 3445,
3094, 2929, 2858, 1607, 1553, 1469, 1352, 1194, 1058, 915, 740 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1309.
Solvent-Free Microwave-Promoted ‘Two-Step,
One-Pot Sequence’ Preparation of Octylthiazolium Bis(trifluoromethanesulfonyl)imide: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-bromooctane (360 mg, 1.5 mmol) was irradiated (CEM Discover reactor)
at 150 ˚C for 1.3 h. Lithium bis(tstrifluoromethanesulfonyl)imide
(373 mg, 1.5 mmol) was added and the resulting mixture was then placed
under MW irradiation for an additional period of 30 min at 100 ˚C.
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) was added. After filtration, the solvent was evaporated. The
crude product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil (356 mg, 75%) which did not need further purification.
1-Octylthiazolium Bis(trifluoromethanesulfonyl)imide
M.p.
30 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.84
(3 H, t, J = 6.6
Hz), 1.25-1.35 (10 H, m), 1.97-2.05 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.35 (1 H, d, J = 3.6
Hz), 8.42 (1 H, d, J = 3.6
Hz), 10.52 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.4, 21.9, 25.5,
28.2, 28.3, 30.1, 31.0, 55.7, 127.2, 136.4, 158.1. IR (NaCl): 3436,
3064, 2926, 2855, 1622, 1553, 1463, 1267, 1154, 906, 834 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1314; found: 198.1316.
Representative Procedure for Microwave-Assisted Intramolecular
Stetter Reaction: A mixture of methyl 4-(2-formylphenoxy)but-2-enoate 6 (Z = H; 0.11
g, 0.5 mmol), Et3N (51 mg, 0.5 mmol) and octylthiazolium
iodide (25 mg, 15% mol) was irradiated at 100 ˚C
for 20 minutes. The reaction was quenched with 0.1 N HCl and extracted with
CH2Cl2. The organic phase was washed with
H2O, dried over MgSO4, filtered and concentrated
in vacuum to afford a pale-orange oil 7 (107
mg, 97% yield).
Methyl 2-(3,4-Dihydro-4-oxo-2
H
-chromen-3-yl)acetate
¹H
NMR (250 MHz, CDCl3): δ = 2.42 (1 H,
dd, J = 8.2, 16.8 Hz), 2.92 (1 H, dd, J = 5.1, 17.1
Hz), 3.28-3.36 (1 H, m), 3.71 (3 H, s), 4. 28 (1 H, t, J = 11.7 Hz),
4.58 (1 H, dd, J = 5.4,
11.1 Hz), 6.99 (1 H, dd, J = 8.8,
15.5 Hz), 7.46 (1 H, t, J = 8.2
Hz), 7.86 (1 H, d, J = 7.9
Hz). ¹³C NMR (90 MHz, CDCl3): δ = 29.9,
42.4, 51.9, 70.1, 117.7, 121.4, 135.9, 161.4, 171.7, 192.4. IR (NaCl):
3583, 2953, 1738, 1694, 1606, 1580, 1480, 1324, 1301, 1215, 1014,
870, 760 cm-¹. HRMS (EI): m/z [M + Na+] calcd
for C12H12O4Na: 243.0627; found:
243.0633.