Abstract
Biomimetic and other strategies that have been developed in the
author’s laboratory for the synthesis of a subset of the group
of enzymically oxidized lipids known as oxylipins are described.
This set of oxylipins contains both a cyclopropane and a lactone,
with the lactone ring size varying between six and nine members.
A biomimetic approach employing cascade cyclization of an epoxyalkenoic
acid was successful in creating the cyclopropane and six-membered
lactone of C20 oxylipins such as the constanolactones
in a single step, but failed in an attempt to create the nine-membered
lactone of halicholactone. Solandelactones, C22 oxylipins
containing a cyclopropane and an eight-membered lactone, were synthesized
by directed Simmons-Smith cyclopropanation followed by
Claisen rearrangement of a cyclic ketene acetal to construct the
lactone
1 Introduction
2 The First Biomimetic Cascade Synthesis of an Oxylipin
3 Biomimetic Cascade Synthesis of Constanolactones A and B
4 A Failed Biomimetic Strategy for Halicholactone
5 Synthesis of the C22 Oxylipins Solandelactones
A, B, E, and F
5.1 A Ring-Closing Metathesis Approach to the Octenalactone Portion
of Solandelactones
5.2 The Petasis-Claisen Rearrangement Route to the
Octenalactone Portion of Solandelactones
6 Conclusion
Key words
biomimetic synthesis - cascade synthesis - cyclopropanation - Claisen rearrangement - lactones - lipids
References
1a
Gerwick WH.
Nagle DG.
Proteau PJ.
Top.
Curr. Chem.
1993,
167:
117
1b
Gerwick WH.
Chem. Rev.
1993,
93:
1807
2
Gerwick WH.
Moghaddam MF.
Hamberg M.
Arch. Biochem.
Biophys.
1991,
290:
436
3
Gerwick WH.
Singh IP. In Lipid
Biotechnology
Kuo
TM.
Gardner HW.
Marcel
Dekker;
New York:
2002.
p.249-275
4a
Niwa H.
Wakamatsu K.
Yamada K.
Tetrahedron Lett.
1989,
30:
4543
4b
Kigoshi H.
Niwa H.
Yamada K.
Stout TJ.
Clardy J.
Tetrahedron
Lett.
1991,
32:
2427
5
Higgs MD.
Mulheirn LJ.
Tetrahedron
1981,
37:
4259
6
Corey EJ.
De B.
Ponder JW.
Berg JM.
Tetrahedron Lett.
1984,
25:
1015
7
Corey EJ.
Matsuda SPT.
Tetrahedron
Lett.
1987,
28:
4247
8
Corey EJ.
d’Alarcoa M.
Matsuda SPT.
Lansbury
PT.
Yamada Y.
J. Am.
Chem. Soc.
1987,
109:
289
9
Brash AR.
J.
Am. Chem. Soc.
1989,
111:
1891
10
Baertschi SW.
Brash A.
Harris TM.
J.
Am. Chem. Soc.
1989,
111:
5003
11
White JD.
Jensen MS.
J. Am. Chem. Soc.
1993,
115:
2970
12
Jin H.
Uenishi J.
Christ W.
Kishi Y.
J.
Am. Chem. Soc.
1986,
108:
5644
13
Gao Y.
Hanson R.
Klunder J.
Ko SY.
Sharpless KB.
J.
Am. Chem. Soc.
1987,
109:
5765
14
Takai K.
Nitta K.
Utimoto K.
Masamune H.
J. Am. Chem. Soc.
1986,
108:
7408
15
Leusink AJ.
Budding HA.
Drenth W.
J.
Organomet. Chem.
1968,
11:
541
16
Echavarren AM.
Tueting DR.
Stille JK.
J. Am. Chem. Soc.
1988,
110:
4039
17
Van Tamelen EE.
Anderson RJ.
J. Am. Chem. Soc.
1972,
94:
8225
18
Derome AE.
Modern NMR Techniques for Chemistry Research
Pergamon;
Oxford
UK:
1987.
p.209-220
19
Ueno Y.
Okawara M.
Tetrahedron Lett.
1976,
4597
20
Nagle DG.
Gerwick WH.
Tetrahedron Lett.
1990,
31:
2995
21
Nagle DG.
Gerwick WH.
J. Org. Chem.
1994,
59:
7227
22
White JD.
Jensen MS.
J. Am. Chem. Soc.
1995,
117:
6224
23
Leblanc Y.
Fitzsimmons BJ.
Adams J.
Perez F.
Rokach J.
J.
Org. Chem.
1986,
51:
789
24
Wong MYH.
Gray GR.
J.
Am. Chem. Soc.
1978,
100:
3548
25
Barloy-Da Silva C.
Benkouider A.
Pale P.
Tetrahedron Lett.
2000,
41:
3077
26
Yu J.
Lai J.-Y.
Ye J.
Balu N.
Reddy LM.
Duan W.
Fogel ER.
Capdevila JH.
Falck JR.
Tetrahedron
Lett.
2002,
43:
3939
27
Pietruszka J.
Wilhelm T.
Synlett
2003,
1698
28 On constanolactones C and D, see: Pietruszka J.
Rieche
ACM.
Schöne N.
Synlett
2007,
2525
On constanolactone E, see:
29a
Miyaoka H.
Shigemoto T.
Yamada Y.
Tetrahedron
Lett.
1996,
37:
7407
29b
Miyaoka H.
Shigemoto T.
Yamada Y.
Heterocycles
1998,
47:
415
30 A proposed revision to the absolute
configuration of neohalicholactone(54 )
was found to be in error: Proteau PJ.
Rossi JV.
Gerwick WH.
J. Nat. Prod.
1994,
57:
1717
31
White JD.
Jensen MS.
Synlett
1996,
31
32
Fallis AG.
Hearn MTW.
Jones ERH.
Thaller V.
Turner JL.
J. Chem. Soc., Perkin Trans. 1
1973,
743
33
Gannett PM.
Nagel DL.
Reilley PJ.
Lawson T.
Sharpe J.
Toth B.
J. Org. Chem.
1988,
53:
1064
34
Takai K.
Kuroda T.
Nakatsukasa S.
Oshiwa K.
Nozaki H.
Tetrahedron
Lett.
1985,
26:
5585
35
Martin GE.
Crouch RC.
J. Nat. Prod.
1991,
54:
1
36
Critcher DJ.
Connolly S.
Mahon MF.
Wills M.
J. Chem. Soc., Chem.
Commun.
1995,
139
37
Critcher DJ.
Connolly S.
Wills M.
Tetrahedron
Lett.
1995,
36:
3763
38
Critcher DJ.
Connolly S.
Wills M.
J.
Org. Chem.
1997,
62:
6638
39a
Takemoto Y.
Baba Y.
Saha G.
Nakao S.
Iwata C.
Tamaka T.
Ibuka T.
Tetrahedron
Lett.
2000,
41:
3653
39b
Baba Y.
Saha G.
Nakao S.
Iwata C.
Tanaka T.
Ibuka T.
Ohishi H.
Takemoto Y.
J.
Org. Chem.
2001,
66:
81
40
Takahashi T.
Watanabe H.
Kitahara T.
Heterocycles
2002,
58:
99
41
Seo Y.
Cho KW.
Rho J.-R.
Shin J.
Kwon B.-M.
Bok S.-H.
Song J.-I.
Tetrahedron
1996,
52:
10583
42
White JD.
Martin WHC.
Lincoln CM.
Yang J.
Org. Lett.
2007,
9:
3481
43
White JD.
Lincoln CM.
Yang J.
Martin WHC.
Chan DB.
J. Org. Chem.
2008,
73:
4139
44
Mohapatra D.
Yellol G.
Arkivoc
2003,
(ix):
21
45
Lincoln CM.
White JD.
Yokochi AFT.
Chem. Commun.
2004,
2846
46
Tamborski CM.
Ford FE.
Soloski EJ.
J. Org. Chem.
1963,
28:
237
See:
47a
Nagasawa T.
Handa Y.
Onoguchi Y.
Obba S.
Suzuki K.
Synlett
1995,
739
47b
Nagasawa T.
Handa Y.
Onoguchi Y.
Suzuki K.
Bull. Chem. Soc. Jpn.
1996,
69:
31
47c
Taylor RE.
Engelhardt FC.
Schmitt MJ.
Yuan H.
J.
Am. Chem. Soc.
2001,
123:
2964 ;
and references cited therein
48
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
49a
Guz NR.
Phillips AJ.
Org. Lett.
2002,
4:
2253
49b
Crimmins MT.
King BW.
Tabet EA.
J. Am. Chem. Soc.
1997,
119:
7883
49c
Crimmins MT.
King BW.
Tabet EA.
Chaudhary K.
J.
Am. Chem. Soc.
2001,
66:
894
50
Oshima K.
Takai K.
Hotta Y.
Nozaki H.
Tetrahedron Lett.
1978,
2417
51 An ab initio calculation using a Hartree-Fock/6-31G** basis set
places the barrier at 7-9 kcal˙mol-¹
52
Charette AB.
Lebel HJ.
J. Org. Chem.
1995,
60:
2966
53a
Petrzilka M.
Helv. Chim. Acta
1978,
61:
3075
53b
Baudat R.
Petrzilka M.
Helv. Chim. Acta
1979,
62:
1406
54a
Robinson RA.
Clark JS.
Holmes AB.
J.
Am. Chem. Soc.
1993,
115:
10400
54b
Burton JW.
Clark JS.
Derrer S.
Stork TC.
Bendall JG.
Holmes AB.
J.
Am. Chem. Soc.
1997,
119:
7483
55
Nagao Y.
Hagiwara Y.
Kumagai T.
Ochiai M.
Inoue T.
Hashimoto K.
Fujita E.
J. Org. Chem.
1986,
51:
2391
56
Vlieghe P.
Clerc T.
Pannecouque C.
Witvrouw M.
De Clerq E.
Salles JP.
Kraus JL.
J. Med. Chem.
2001,
44:
3014
57
Carling RW.
Holmes AB.
J. Chem. Soc., Chem. Commun.
1986,
325
58
Petasis NA.
Bzowej EI.
J. Am. Chem. Soc.
1990,
112:
6392
59
Anderson EA.
Davidson JEP.
Harrison JR.
O’Sullivan PT.
Burton JW.
Collins I.
Holmes AB.
Tetrahedron
2002,
58:
1943
60
Saito S.
Hasegawa T.
Inaba M.
Nishida R.
Fujii T.
Nomizu S.
Moriwake T.
Chem.
Lett.
1984,
1389
61
Bessodes M.
Komiotis D.
Autonakis K.
Tetrahedron
Lett.
1986,
27:
579
62a
Davoren JE.
Martin SF.
J. Am. Chem. Soc.
2007,
129:
510
62b
Davoren JE.
Harcken C.
Martin SF.
J. Org. Chem.
2008,
73:
391
63
Pietruszka J.
Rieche ACM.
Adv. Synth.
Catal.
2008,
350:
1407