Synlett 2009(10): 1659-1663  
DOI: 10.1055/s-0029-1217335
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Simple, General, and Highly Chemoselective Acetylation of Alcohols Using Ethyl Acetate as the Acetyl Donor Catalyzed by a Tetranuclear Zinc Cluster

Takanori Iwasaki, Yusuke Maegawa, Yukiko Hayashi, Takashi Ohshima*, Kazushi Mashima*
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
e-Mail: ohshima@chem.es.osaka-u.ac.jp; e-Mail: mashima@chem.es.osaka-u.ac.jp;
Further Information

Publication History

Received 15 January 2009
Publication Date:
02 June 2009 (online)

Abstract

In the presence of a Zn-cluster catalyst, alcohols are efficiently converted to the corresponding acetate just by refluxing in EtOAc. The mild reaction conditions enabled the reactions of various functionalized alcohols to proceed in good to excellent yield. Moreover, even when a large excess of the acetyl donor is used, the hydroxyl groups are selectively acetylated in the presence of highly nucleophilic aliphatic amino groups, approaching chemoselectivity to that of enzymatic system.

    References and Notes

  • 1a Comprehensive Organic Synthesis   Vol 6.:  Trost BM. Fleming I. Pergamon Press; New York: 1992. 
  • 1b Larock RC. In Comprehensive Organic Transformations   2nd ed.:  Wiley-VCH; New York: 1996. 
  • 1c Otera J. In Esterification Methods, Reactions and Applications   Wiley-VCH; Weinheim: 2003. 
  • 2 Protective Groups in Organic Synthesis   4th ed.:  Green TW. Wuts PGM. John Wiley and Sons; New Jersey: 2006. 
  • 3 For a representative example of catalytic acetylation with Ac2O under auxiliary base-free conditions, see: Sakakura A. Kawajiri K. Ohkubo T. Kosugi Y. Ishihara K. J. Am. Chem. Soc.  2007,  129:  14775 ; and references therein
  • For reviews, see:
  • 4a Otera J. Chem. Rev.  1993,  93:  1449 
  • 4b Hydonckx HE. De Vos DE. Chavan SA. Jacobs PA. Top. Catal.  2004,  27:  83 
  • 4c Grasa GA. Singh R. Nolan SP. Synthesis  2004,  971 
  • For acetylation using enol esters as an acyl donor, see:
  • 5a Kita Y. Maeda H. Omori K. Okuno T. Tamura Y. Synlett  1993,  273 
  • 5b Ishii Y. Takeno M. Kwasaki Y. Murromachi A. Nishiyama Y. Sakaguchi S. J. Org. Chem.  1996,  61:  3088 
  • 5c Dinh PM. Howarth JA. Hudnott AR. Williams JMJ. Tetrahedron Lett.  1996,  37:  7623 
  • 5d Orita A. Mitsutome A. Otera J. J. Org. Chem.  1998,  63:  2420 
  • 5e Ilankumaran P. Verkade JG. J. Org. Chem.  1999,  64:  9063 
  • 5f Lin M.-H. RajanBabu TV. Org. Lett.  2000,  2:  997 
  • 5g Grasa GA. Kissling RM. Nolan SP. Org. Lett.  2002,  4:  3583 
  • 5h Grasa GA. Güveli T. Singh R. Nolan SP. J. Org. Chem.  2003,  68:  2812 
  • 5i Bosco JWJ. Saikia AK. Chem. Commun.  2004,  1116 
  • 5j Shirae Y. Mino T. Hasegawa T. Sakamoto M. Fujita T. Tetrahedron Lett.  2005,  46:  5877 
  • 5k Bosco JWJ. Agrahari A. Saikia AK. Tetrahedron Lett.  2006,  47:  4065 
  • 5l Kobayashi J. Mori Y. Kobayashi S. Chem. Commun.  2006,  4227 
  • 5m Mino T. Hasegawa T. Shirae Y. Sakamoto M. Fujita T. J. Organomet. Chem.  2007,  692:  4389 
  • 5n Magen S. Ertelt M. Jatsch A. Plietker B. Org. Lett.  2008,  10:  53 
  • For acetylation with enol esters by enzymes, see:
  • 6a Wong C.-H. Whitesides GM. In Enzymes in Synthetic Organic Chemistry   Pergamon; Oxford: 1994. 
  • 6b Faber K. In Biotransformations in Organic Chemistry   Spinger; Berlin: 2000. 
  • 7a Nishiguchi T. Taya H. J. Am. Chem. Soc.  1989,  111:  9102 
  • 7b Iranpoor N. Shekarriz M. Bull. Chem. Soc. Jpn.  1999,  72:  455 
  • 7c Orita A. Sakamoto K. Hamada Y. Mitsutome A. Otera J. Tetrahedron  1999,  55:  2899 
  • 7d Ranu BC. Dutta P. Sarkar A. J. Chem. Soc., Perkin Trans. 1  2000,  2223 
  • 7e Habibi MH. Tangestaninejad S. Mirkhani V. Yadollahi B. Tetrahedron  2001,  57:  8333 
  • 7f Singh R. Kissling RM. Letellier M.-A. Nolan SP. J. Org. Chem.  2004,  69:  209 
  • 7g Tayebee R. Alizadeh MH. Monatsh. Chem.  2006,  137:  1063 
  • Substrates bearing cyclic acetal and TBDMS ether functionalities were used for In/I2 catalyst system, see ref. 7d. Representative examples using stoichiometric amounts of reagents, see:
  • 8a Posner GH. Oda M. Tetrahedron Lett.  1981,  22:  5003 
  • 8b Posner GH. Okada SS. Babiak KA. Miura K. Rose RK. Synthesis  1981,  789 
  • 9a Ohshima T. Iwasaki T. Mashima K. Chem. Commun.  2006,  2711 
  • 9b Ohshima T. Iwasaki T. Maegawa Y. Yoshiyama A. Mashima K. J. Am. Chem. Soc.  2008,  130:  2944 
  • 9c Iwasaki T. Maegawa Y. Hayashi Y. Ohshima T. Mashima K. J. Org. Chem.  2008,  73:  5147 
  • 9d Sniady A. Durham A. Morreale MS. Marcinek A. Szafert S. Lis T. Brzezinska KR. Iwasaki T. Ohshima T. Mashima K. Dembinski R. J. Org. Chem.  2008,  73:  5881 
  • 10a Burley SK. David PR. Taylor A. Lipscomb WN. Proc. Natl. Acad. Sci. U.S.A.  1990,  87:  6878 
  • 10b Roderick SL. Matthews BW. Biochemistry  1993,  32:  3907 
  • 10c Chevrier B. Schalk C. D’orchymont H. Rondeau JM. Moras D. Tarnus C. Structure (Cambridge, MA, U.S.)  1994,  2:  283 
  • 10d Leopoldini M. Russo N. Toscano M.
    J. Am. Chem. Soc.  2007,  129:  7776 
  • For a general review, see:
  • 11a Multimetallic Catalysts in Organic Synthesis   Shibasaki M. Yamamoto Y. Wiley-VCH; Weinheim: 2004. 
  • For representative examples of multinuclear zinc catalysts, see:
  • 11b Yoshikawa N. Kumagai N. Matsunaga S. Moll G. Ohshima T. Suzuki T. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  2466 
  • 11c Trost BM. Ito H. Silcoff ER. J. Am. Chem. Soc.  2001,  123:  3367 
  • 13 Otera J. Acc. Chem. Res.  2004,  37:  288 
  • 16 For a review, see: Nahmany M. Melman A. Org. Biomol. Chem.  2004,  2:  1563 
  • 17a Mukaiyama T. Pai F.-C. Onaka M. Narasaka K. Chem. Lett.  1980,  563 
  • 17b Brown BR. Cocker J. J. Chem. Res., Synop.  1984,  2:  46 
  • 17c Gardossi L. Bianchi D. Kibanov AM. J. Am. Chem. Soc.  1991,  113:  6328 
12

See Supporting Information for details.

14

In a similar way, acidic alcohols, such as 1,1,1,3,3,3-hexafluoropropan-2-ol (pK a 9.3), did not participate in the acylation, see ref. 9c.

15

For primary aliphatic alcohol selective acetylation by catalytic transesterification, see ref. 5d,f,i,k,7d,g.

18

Yield of 9 was determined after N-Boc protection to simplify the analysis.

19

Typical Experimental Procedure for the Acetylation of Alcohol 2f
A mixture of Zn4 (OCOCF3)6O (1, 36 mg, 0.038 mmol),
4-(triethylsiloxymethyl)benzyl alcohol (2f, 759 mg, 3.0 mmol), and EtOAc (5.0 mL) was refluxed for 18 h under an argon atmosphere. The resulting mixture was concentrated and purified by silica gel column chromatography (silica gel, hexane-EtOAc = 20:1 to 4:1) to provide the acetate 3f (790 mg, 89%) as a colorless oil together with unreacted substrate 2f (38 mg, 5%). IR (neat NaCl): 2955, 2876, 1744, 1517, 1458, 1415, 1379, 1362, 1228, 1092, 1019, 971, 820, 742 cm. ¹H NMR (300 MHz, CDCl3, 35 ˚C): δ = 0.65 (q, J = 7.5 Hz, 6 H, SiCH 2CH3), 0.98 (t, J = 7.5 Hz, 9 H, SiCH2CH 3), 2.08 (s, 3 H, COCH 3), 4.73 (s, 2 H, ArCH 2OSi), 5.09 (s, 2 H, ArCH 2OAc), 7.32 (m, 4 H, Ar). ¹³C NMR (75 MHz, CDCl3, 35 ˚C): δ = 4.51, 6.70, 20.92, 64.39, 66.13, 126.32, 128.21, 134.62, 141.54, 170.76. MS (EI): m/z (%) = 294 (1) [M+], 265 (62), 145 (100), 103 (39), 75 (20). HRMS (EI): m/z calcd for C16H26O3Si: 294.1651; found: 294.1646.