Synlett 2009(10): 1655-1658  
DOI: 10.1055/s-0029-1217322
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Enantioselective Synthesis of α-Diazo-β-hydroxy Esters Using a Bifunctional Titanium Complex

Wentao Wanga, Ke Shena, Xiaolei Hua, Jun Wanga, Xiaohua Liua, Xiaoming Feng*a,b
a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
b State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, P. R. of China
Fax: +86(28)85418249; e-Mail: xmfeng@scu.edu.cn;
Further Information

Publication History

Received 18 November 2008
Publication Date:
02 June 2009 (online)

Abstract

A bifunctional titanium catalyst system has been developed for the asymmetric direct-type aldol reaction of ethyl diazo­acetate with aldehydes, which produced the desired products in good yields (up to 83%) with excellent enantioselectivities (up to 94% ee). A wide range of aromatic, heteroaromatic and aliphatic aldehydes were found to be suitable substrates in the presence of (S)-BINOL (5 mol%), cinchonine (5 mol%), Ti(Oi-Pr)4 (5 mol%) and H2O (15 mol%). On the basis of the experimental results and previous reports, a possible working model has been proposed to explain the origin of the activation and asymmetric induction.

    References and Notes

  • 1a Modern Aldol Reactions   Vol. 1 and 2:  Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 1b Palomo C. Oiarbide M. Garcia JM. Chem. Eur. J.  2002,  8:  36 
  • 1c Machajewski TD. Wong CH. Angew. Chem. Int. Ed.  2000,  39:  1352 ; Angew. Chem. 2000, 112, 1406
  • 1d Denmark SE. Stavenger RA. Acc. Chem. Res.  2000,  33:  432 
  • 1e Palomo C. Oiarbide M. Garcia JM. Chem. Soc. Rev.  2004,  33:  65 
  • 1f Kimball DB. Silks LA. Curr. Org. Chem.  2006,  10:  1975 
  • Some reviews for catalytic asymmetric direct-type aldol reactions:
  • 2a Alcaide B. Almendros P. Eur. J. Org. Chem.  2002,  10:  1595 
  • 2b Shibasaki M. Kanai M. Funabashi K. Chem. Commum.  2002,  1989 
  • 2c Shibasaki M. Yoshikawa N. Chem. Rev.  2002,  102:  2187 
  • 2d List B. Acc. Chem. Res.  2004,  37:  548 
  • 2e Notz W. Tanaka F. Barbas CF. Acc. Chem. Res.  2004,  37:  580 
  • 2f Saito S. Yamamoto H. Acc. Chem. Res.  2004,  37:  570 
  • 2g Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 2h Guillena G. Nájera C. Ramón DJ. Tetrahedron: Asymmetry  2007,  18:  2249 ; and references therein
  • 3 Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds   Wiley-Interscience; New York: 1998. 
  • For reviews, see:
  • 4a Ye T. McKervey MA. Chem. Rev.  1994,  94:  1091 
  • 4b Miller DJ. Moody CJ. Tetrahedron  1995,  51:  10811 
  • 4c Padwa A. Weingarten MD. Chem. Rev.  1996,  96:  223 
  • 4d Doyle MP. Forbes DC. Chem. Rev.  1998,  98:  911 
  • 4e Gois PMP. Afonso CAM. Eur. J. Org. Chem.  2004,  18:  3773 
  • 4f Zhao YH. Wang JB. Synlett  2005,  2886 
  • 4g Wee AGH. Curr. Org. Synth.  2006,  3:  499 
  • 4h Zhang ZH. Wang JB. Tetrahedron  2008,  64:  6577 
  • For racemate synthesis, see:
  • 5a Schöllkopf U. Frasnelli H. Hoppe D. Angew. Chem., Int. Ed. Engl.  1970,  9:  301 ; Angew. Chem. 1970, 82, 291
  • 5b Wenkert E. McPherson CA. J. Am. Chem. Soc.  1972,  94:  8084 
  • 5c Moody CJ. Taylor RJ. Tetrahedron Lett.  1987,  28:  5351 
  • 5d Pellicciari R. Natalini B. Sadeghpour BM. Marinozzi M. Snyder JP. Williamson BL. Kuethe JT. Padwa A. J. Am. Chem. Soc.  1996,  118:  1 
  • 5e Moody CJ. Morfitt CN. Synthesis  1998,  1039 
  • 5f Jiang N. Wang JB. Tetrahedron Lett.  2002,  43:  1285 
  • 5g Varala R. Enugala R. Nuvula S. Adapa SR. Tetrahedron Lett.  2005,  47:  877 
  • 5h Sreedhar B. Balasubrahmanyam V. Sridhar C. Prasad MN. Catal. Commun.  2005,  6:  517 
  • 5i Xiao FP. Liu Y. Wang JB. Tetrahedron Lett.  2007,  48:  1147 
  • 5j Kantam ML. Balasubrahmanyam V. Kumar KBS. Venkanna GT. Figueras F. Adv. Synth. Catal.  2007,  349:  1887 
  • 5k Kantam ML. Chakrapani L. Ramani T. Tetrahedron Lett.  2007,  48:  6121 
  • 5l Likhar PR. Roy S. Roy M. Subhas MS. Kantam ML. Synlett  2008,  1283 
  • 6a Yao WG. Wang JB. Org. Lett.  2003,  5:  1527 
  • 6b Arai S. Hasegawa K. Nishida A. Tetrahedron Lett.  2004,  45:  1023 
  • 6c Hasegawa K. Arai S. Nishida A. Tetrahedron  2006,  62:  1390 
  • 6d Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2005,  127:  9360 
  • 6e Hashimoto T. Maruoka K. J. Am. Chem. Soc.  2007,  129:  10054 
  • 7a Gou SH. Chen XH. Xiong Y. Feng XM. J. Org. Chem.  2006,  71:  5732 
  • 7b Wang J. Hu XL. Jiang J. Gou SH. Huang X. Liu XH. Feng XM. Angew. Chem. Int. Ed.  2007,  46:  8468 ; Angew. Chem. 2007, 119 8620
  • 7c Wang WT. Gou SH. Liu XH. Feng XM. Synlett  2007,  2815 
  • For some reviews, see:
  • 8a Mikami K. Terada M. Korenaga T. Matsumoto Y. Matsukawa S. Acc. Chem. Res.  2000,  33:  391 
  • 8b Mikami K. Terada M. Korenaga T. Matsumoto Y. Ueki M. Angelaud R. Angew. Chem. Int. Ed.  2000,  39:  3532 ; Angew. Chem. 2000, 112, 3676
  • 8c Gennari C. Piarulli U. Chem. Rev.  2003,  103:  3071 
  • 8d Mikami K. Yamanaka M. Chem. Rev.  2003,  103:  3369 
  • 8e Walsh PJ. Lurain AE. Balsells J. Chem. Rev.  2003,  103:  3297 
  • 8f Faller JW. Lavoie AR. Parr J. Chem. Rev.  2003,  103:  3345 
  • 8g Ding KL. Du HF. Yuan Y. Long J. Chem. Eur. J.  2004,  10:  2872 
  • 8h Ding KL. Chem. Commun.  2008,  909 ; and references therein
  • For some examples, see:
  • 9a Mikami K. Matsukawa S. Nature (London)  1997,  385:  613 
  • 9b Mikami K. Matsukawa S. Volk T. Terada M. Angew. Chem., Int. Ed. Engl.  1997,  36:  2768 ; Angew. Chem. 1997, 109, 2936
  • 9c Pandiaraju S. Chen G. Lough A. Yudin AK. J. Am. Chem. Soc.  2001,  123:  3850 
  • 9d Li XS. Lu G. Kwok WH. Chan ASC. J. Am. Chem.  2002,  124:  12636 
  • 9e Takacs JM. Reddy DS. Moteki SA. Wu D. Palencia H. J. Am. Chem. Soc.  2004,  126:  4494 
  • 9f Horiuchi Y. Gnanadesikan V. Ohshima T. Masu H. Katagiri K. Sei Y. Yamaguchi K. Shibasaski M. Chem. Eur. J.  2005,  11:  5195 
  • 9g Weis M. Waloch C. Seiche W. Breit B. J. Am. Chem. Soc.  2006,  128:  4188 
  • 9h Gou SH. Liu XH. Zhou X. Feng XM. Tetrahedron  2007,  63:  7935 
  • 9i Breit B. Pure Appl. Chem.  2008,  80:  855 
  • 11 In some metal-catalyzed asymmetric reactions, H2O affected the yields and enantioselectivities, see: Ribe S. Wipf P. Chem. Commun.  2001,  299 
  • For some reviews, see:
  • 12a Shibasaki M. Sasai H. Arai T. Angew. Chem., Int. Ed. Engl.  1997,  1236 ; Angew. Chem. 1997, 109, 1290
  • 12b Gröger H. Chem. Eur. J.  2001,  7:  5246 
  • 12c Shibasaki M. Yoshikawa N. Chem. Rev.  2002,  102:  2187 
  • 12d Ma JA. Cahard D. Angew. Chem. Int. Ed.  2004,  43:  4566 ; Angew. Chem. 2004, 116, 4666
10

The catalyst prepared from 5 mol% (S)-BINOL-Ti(Oi-Pr)4 complex gave the expected product in 40% yield with 29% ee after 72 h.

13

General Procedure for the Asymmetric Aldol Reaction of Ethyl Diazoacetate with Benzaldehyde Ti(Oi-Pr)4 (1.0 M in toluene, 7.5 µL, 0.0075 mmol) was added to a soln of 1a (2.2 mg, 0.0075 mmol), 2a (2.2 mg, 0.0075 mmol) in THF (0.5 mL), and the mixture was stirred at 25 ˚C under Ar. This was followed by the addition of H2O (1.0 M in THF, 22.5 µL, 0.0225 mmol). Benzaldehyde (0.15 mmol) was added after the contents were stirred for 30 min at 25 ˚C. To this solution, ethyl diazoacetate (0.45 mmol) was added under 0 ˚C. The reaction was vigorously stirred at 0 ˚C under Ar atmosphere and monitored by TLC, after 6 d, the residue was purified by flash SiO2 chromatography
(PE-acetone, 10:1) to afford the corresponding α-diazo-β-hydroxy ester 5a (20.5 mg, 62% yield) as a yellow oil with 91% ee; HPLC [Chiralpak AD-H column, hexane-2-PrOH (90:10), 254 nm, 1.0 mL min]: t R(minor) = 6.906 min, t R(major) = 7.774 min; [α]D ²5 +21.9 (c 0.42, CH2Cl2). Lit.6a [α]D ²0 -9.5 (c 3.2, CH2Cl2) for R enantiomer in 87% ee. ¹H NMR (400 MHz, CDCl3): δ = 7.28-7.45 (m, 5 H), 5.94 (s, 1 H), 4.31 (q, J = 7.2 Hz, 2 H), 2.99 (br s, 1 H), 1.32 (t, J = 7.2 Hz, 3 H) ppm.