Synlett 2009(10): 1635-1638  
DOI: 10.1055/s-0029-1217192
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Asymmetric Synthesis of Nitrogen-Containing gem-Bisphosphonates Using a Dinuclear Ni2-Schiff Base Complex

Yuko Kato, Zhihua Chen, Shigeki Matsunaga*, Masakatsu Shibasaki*
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
Fax: +81(3)56845206; e-Mail: mshibasa@mol.f.u-tokyo.ac.jp; e-Mail: smatsuna@ mol.f.u-tokyo.ac.jp;
Further Information

Publication History

Received 30 January 2009
Publication Date:
02 June 2009 (online)

Abstract

A catalytic asymmetric synthesis of nitrogen-containing gem-bisphoshonates is described. A Lewis acid-Brønsted base bifunctional homodinuclear Ni2-Schiff base complex promoted catalytic enantioselective conjugate addition of nitroacetates to ethylidenebisphosphonates, giving products in up to 93% ee and 94% yield. Transformation of the product into a chiral α-amino ­ester with a gem-bisphosphonate moiety is also described.

    References

  • 1 For a recent review, see: Zhang S. Gangal G. Uludag H. Chem. Soc. Rev.  2007,  36:  507 
  • Reviews focused on the anticancer activity:
  • 2a Guise TA. Cancer Treat. Rev.  2008,  34:  S19 
  • 2b Lipton A. Cancer Treat. Rev.  2008,  34:  S25 
  • 2c Coleman RE. Body J.-J. Gralow JR. Lipton A. Cancer Treat. Rev.  2008,  34:  S31 
  • 3 Hudock MP. Sanz-Rodríguez CE. Song Y. Chan J MW. Zhang Y. Odeh S. Kosztowski T. Leon-Rossell A. Concepción JL. Yardley V. Croft SL. Urbina JA. Oldfield E. J. Med. Chem.  2006,  49:  215 ; and references therein
  • 4a Sulzer-Mossé S. Tissot M. Alexakis A. Org. Lett.  2007,  9:  3749 
  • 4b Capuzzi M. Perdicchia D. Jørgensen KA. Chem. Eur. J.  2008,  14:  128 
  • 4c Barros MT. Phillips AMF. Eur. J. Org. Chem.  2008,  2525 
  • 5 A general review on organocatalytic asymmetric 1,4-additions: Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • 6a Zhang Y. Leon A. Song Y. Studer D. Haase C. Koscielski LA. Oldfield E. J. Med. Chem.  2006,  49:  5804 
  • 6b Dunford JE. Kwaasi AA. Rogers MJ. Barnett BL. Ebetino FH. Russell RGG. Oppermann U. Kavanagh KL. J. Med. Chem.  2008,  51:  2187 
  • 6c Kavanagh KL. Guo K. Dunford JE. Wu X. Knapp S. Ebetino FH. Rogers MJ. Russell RG. Oppermann U. Proc. Natl. Acad. Sci. U.S.A.  2006,  103:  7829 
  • Recent reviews on bifunctional asymmetric catalysis:
  • 7a Shibasaki M. Matsunaga S. Kumagai N. Synlett  2008,  1583 
  • 7b Matsunaga S. Shibasaki M. Bull. Chem. Soc. Jpn.  2008,  81:  60 
  • 7c Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 7d Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 7e Yamamoto H. Futatsugi K. Angew. Chem. Int. Ed.  2005,  44:  1924 
  • 8 General review on metal-catalyzed asymmetric 1,4-additions: Christoffers J. Koripelly G. Rosiak A.
    Rössle
    M. Synthesis  2007,  1279 
  • For selected recent examples of bifunctional Lewis acid-Brønsted base catalysts developed in our group for asymmetric 1,4-additions, see: La catalyst:
  • 9a Park S.-Y. Morimoto H. Matsunaga S. Shibasaki M. Tetrahedron Lett.  2007,  48:  2815 ; and references therein
  • Y-Li catalyst:
  • 9b Yamagiwa N. Qin H. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2005,  127:  13419 
  • Zn catalyst:
  • 9c Harada S. Kumagai N. Kinoshita T. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2003,  125:  2582 
  • 10a Handa S. Gnanadesikan V. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  4900 
  • 10b Handa S. Nagawa K. Sohtome Y. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2008,  47:  3230 
  • 10c Chen Z. Morimoto H. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2008,  130:  2170 
  • 10d Sohtome Y. Kato Y. Handa S. Aoyama N. Nagawa K. Matsunaga S. Shibasaki M. Org. Lett.  2008,  10:  2231 
  • 10e Chen Z. Yakura K. Matsunaga S. Shibasaki M. Org. Lett.  2008,  10:  3239 
  • 10f Chen Z. Furutachi M. Kato Y. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2009,  48:  2218 
  • 10g Xu Y. Lu G. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2009,  48:  3353 
  • For selected examples of related bifunctional bimetallic Schiff base complexes in asymmetric catalysis, see
  • 11a Annamalai V. DiMauro EF. Carroll PJ. Kozlowski MC. J. Org. Chem.  2003,  68:  1973 ; and references therein
  • 11b Sammis GM. Danjo H. Jacobsen EN. J. Am. Chem. Soc.  2004,  126:  9928 
  • 11c Yang M. Zhu C. Yuan F. Huang Y. Pan Y. Org. Lett.  2005,  7:  1927 
  • 11d Gao J. Woolley FR. Zingaro RA. Org. Biomol. Chem.  2005,  3:  2126 
  • 11e Li W. Thakur SS. Chen S.-W. Shin C.-K. Kawthekar RB. Kim G.-J. Tetrahedron Lett.  2006,  47:  3453 
  • A review on the synthesis of α-hydroxy-bisphosphonates:
  • 14a Lecouvey M. Leroux Y. Heteroatom Chem.  2000,  11:  556 
  • For the rearrangement of α-hydroxy-bisphosphonate, see:
  • 14b Szajnman SH. García Liñares G. Moro P. Rodriguez JB. Eur. J. Org. Chem.  2005,  3687 
  • 14c Burgos-Lepley CE. Mizsak SA. Nugent RA. Johnson RA. J. Org. Chem.  1993,  58:  4159 
12

To demonstrate the stability of the Ni2-Schiff base 1 complex, the catalyst stored for 3 months was used in this study. Freshly prepared Ni2-Schiff base 1 complex showed comparable reactivity and enantioselectivity. For more detailed information of the Ni2-Schiff base 1 complex, see ref. 10c.

13

The absolute configuration of 6 was determined by comparing the sign of optical rotation with the literature data in ref. 4b. The enantiofacial selectivity of β-keto ester was same as that observed in the asymmetric Mannich-type reaction of β-keto ester using the Ni2-Schiff base 1 complex. The absolute configurations of 4 were tentatively assigned in analogy based on the enantiofacial selectivity of nitroacetate 3b in the asymmetric Mannich-type reactions.

15

General Procedure
5 Å MS (Fluka, powder, 20 mg) in a test tube was flame-dried prior to use under vacuum for 5 min. After cooling down to r.t., argon gas was refilled, and the Ni2-Schiff base 1 catalyst (6.4 mg, 0.01 mmol) and toluene (333 µL) were added. The mixture was cooled down to 0 ˚C, and nitro-acetate 3b (15.9 µL, 0.11 mmol) was added to the mixture. After stirring for 15 min at 0 ˚C, ethylidenebisphosphonate 2a (27.5 µL, 0.1 mmol) was added. The reaction mixture was stirred for 24 h at 0 ˚C. The mixture was filtered through a short pad of SiO2 (eluent: hexane-acetone = 1:3). The combined filtrate was concentrated under reduced pressure, and the residue was purified by SiO2 column chromatography (hexane-acetone = 4:1 to 2:1) to afford 4ab (39.7 mg, 0.083 mmol, 83% yield) as a colorless oil.
Compound 4ab: colorless oil. IR(neat): ν = 3473, 2982, 1746, 1555, 1251, 1023 cm. ¹H NMR (500 MHz, CDCl3): δ = 1.29-1.40 (m, 12 H), 1.46 (s, 9 H), 1.76 (s, 3 H), 2.36-2.50 (m, 1 H), 2.77-3.01 (m, 2 H), 4.06-4.26 (m, 8 H). ¹³C NMR (125 MHz, CDCl3): δ =14.8, 16.1-16.4 (m), 19.0, 29.4, 30.3 (t, J = 154.0 Hz), 62.9-63.1 (m), 82.8, 90.6, 164.2. ³¹P NMR (202 MHz, CDCl3): δ = 20.4, 21.4. ESI-MS: m/z = 498 [M + Na]+. HRMS: m/z calcd for C17H36NO10P2 [M + H]+: 475.1814; found: 476.1811; [α]D ²².5 -19.8 (c 0.80, CHCl3). HPLC [DAICEL CHIRALPAK AD-H, hexane-
2-PrOH (95:5), flow 1 mL/min, detection at 210 nm]: t R = 21.8 min (major)and 20.2 min (minor).