Synthesis 2010(1): 171-179  
DOI: 10.1055/s-0029-1217043
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Racemic and Enantiomerically Pure Acetylenic ω-Keto Esters Derived from 2-Methyl-1,3-cycloalkanediones and 2-Methylcycloalkanones Respectively

Philippe Geoffroya, Marie-Paule Balleta, Sidonie Fincka,1, Eric Marchionib, Christophe Marcicb, Michel Miesch*a
a Université de Strasbourg, Institut de Chimie, UMR 7177, Laboratoire de Chimie Organique Synthétique, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg, France
Fax: +33(3)90241754; e-Mail: [email protected];
b Université de Strasbourg, Faculté de Pharmacie, IPCH, UMR 7178, Laboratoire de Chimie Analytique et Sciences de l’Aliment-74, route du Rhin, 67400 Illkirch, France
Further Information

Publication History

Received 6 July 2009
Publication Date:
03 November 2009 (online)

Abstract

Racemic and enantiomerically pure alkynyl esters tethered, respectively, to 2-methyl-1,3-cycloalkanediones and 2-methyl­cycloalkanones were readily obtained starting from common intermediates, which were available on large scale.

    References

  • The Hajos-Parrish-Eder-Sauer-Wiechert reaction is one of the most representative examples of a methodology using 2-substituted 2-methyl-1,3-cycloalkanediones as starting materials, see:
  • 2a Hajos ZG, and Parrish DR. inventors; German Patent DE  2,102,623.  1971
  • 2b Hajos ZG. Parrish DR. J. Org. Chem.  1974,  39:  1615 
  • 2c Eder U, Sauer G, and Wiechert R. inventors; German Patent DE  2,014,757.  1971
  • 2d Eder U. Sauer G. Wiechert R. Angew. Chem. Int., Ed. Engl.  1971,  10:  496 
  • 2e For a recent application in total synthesis, see: Murata Y. Yamashita D. Kitahara K. Minasako Y. Nakazaki A. Kobayashi S. Angew. Chem. Int. Ed.  2009,  48:  1400 
  • 3 D’Angelo J. Desmaële D. Dumas F. Guiguant A. Tetrahedron: Asymmetry  1998,  3:  459 
  • 4a Balog A. Geib SV. Curran DP. J. Org. Chem.  1995,  60:  345 
  • 4b Boger DL. Mathvink RJ. J. Org. Chem.  1990,  55:  5442 
  • 5 Rhee JU. Krische MJ. Org. Lett.  2005,  7:  2493 
  • 6 Miesch L. Welsch T. Rietsch V. Miesch M. Chem. Eur. J.  2009,  15:  4394 ; and references cited therein
  • 7a Schick H. Schwarz H. Finger A. Tetrahedron  1982,  38:  1279 
  • 7b Nayyar S. Trehan I. Kaur J. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2002,  41:  2342 
  • 8a Brooks DW. Mazdiyasni H. Chakrabarti S. Tetrahedron Lett.  1984,  25:  1241 
  • 8b Brooks DW. Mazdiyasni H. Grothaus P. G. J. Org. Chem.  1987,  52:  3223 
  • 9a Katoh T. Mizumoto S. Fudesaka M. Nakashima T. Node M. Synlett  2006,  2176 
  • 9b Katoh T. Mizumoto S. Fudesaka M. Takeo M. Kajimoto T. Node M. Tetrahedron: Asymmetry  2006,  17:  1655 
  • 10 Parikh JR. Doering WE. J. Am. Chem. Soc.  1967,  89:  5505 
  • 11a Corey EJ. Fuchs P. Tetrahedron Lett.  1972,  3769 
  • For the homologation of aldehyde to alkyne see also:
  • 11b Colvin EW. Hammil BJ. J. Chem. Soc., Chem. Commun.  1973,  151 
  • 11c Ohira S. Synth. Commun.  1989,  561 
  • 11d Taber DF. Bai S. Guo PF. Tetrahedron Lett.  2008,  49:  6904 
  • 12a Schick H. Roatsch B. Schwarz H. Hauser A. Schwarz S. Liebigs Ann. Chem.  1992,  419 
  • 12b Rouillard A. Deslongchamps P. Tetrahedron  2002,  58:  6555 
  • 12c Yamazaki J. Bedekar AV. Watanabe T. Tanaka K. Watanabe J. Fuji K. Tetrahedron: Asymmetry  2002,  13:  729 
  • 12d Deschamp J. Riant O. Org. Lett.  2009,  11:  1217 
  • 13 Schinzer D. Muller N. Fischer AK. Priess JW. Synlett  2000,  1265 
  • 14 Watanabe H. Iwamoto M. Nakata M. J. J. Org. Chem.  2005,  70:  4652 
  • 15 Klein A. Miesch M. Synthesis  2006,  2613 
  • 16 Pitzele BS. Baran JS. Steinman DH. J. Org. Chem.  1975,  40:  269 
  • 17a Huckin SN. Weiler L. J. Am. Chem. Soc.  1974,  96:  1082 
  • 17b Moriarty RM. Varid RK. Ravikumar VT. Hopkins TE. Farid P. Tetrahedron  1989,  45:  1605 
1

In part. S.F. achieved the synthesis of compound 17 by using the synthetic route described in Scheme 4.