RSS-Feed abonnieren
DOI: 10.1055/s-0028-1123972
© Georg Thieme Verlag KG Stuttgart · New York
Analogien zwischen Herz- und Atemmuskelinsuffizienz
Bedeutung in der KlinikAnalogy of heart and respiratory muscle failureRelevance to clinical practicePublikationsverlauf
eingereicht: 26.5.2008
akzeptiert: 16.10.2008
Publikationsdatum:
15. Januar 2009 (online)

Zusammenfassung
Herzinsuffizienz ist eine etablierte Diagnose. Weniger bekannt ist eine Atemmuskel- oder Atempumpeninsuffizienz. Sie wird sichtbar in einer Hyperkapnie, die durch eine Hypoventilation entsteht. Das Atmungszentrum stellt diese aktiv ein, damit es zu keiner gefährlichen Überlastung der Muskulatur kommt (hyperkapnisches Versagen). Konsekutiv entwickelt sich durch die Hypoventilation eine Hypoxämie, die für die Leistungslimitierung nicht verantwortlich ist. Davon streng zu trennen ist ein hypoxämisches Versagen, welches vom Lungenparenchym ausgeht. Hier führt die Hypoxämie. Infolge einer meist kompensatorischen Hyperventilation ist der PaCO2 erniedrigt.
Die Herz- wie die Atempumpe stellen sich bei entsprechender chronischer Erkrankung auf eine unvermeidbare Überlastungssituation ein. In beiden Fällen kommt es zur Hypertrophie der Muskulatur. Überschreitet die Belastung die physiologische Regulationsbreite, so gibt es Kompensationsmechanismen, die bei beiden Pumporganen ähnlich sind. Beide Muskeln greifen in Überlastungssituationen auf ihr Muskelglykogen als Energiesubstrat zurück. In Phasen der Erholung (insbesondere im Schlaf) kommt es hier zur Rückspeicherung, die bei der Herzpumpe durch Abfall des Blutdrucks und bei der Atempumpe durch Verstärkung der Hypoventilation mit Zunahme der Hyperkapnie indirekt sichtbar wird.
Da die Hauptfunktion beider Organe der Sauerstofftransport ist und dieser durch die Insuffizienz vor allen Dingen unter Belastungsbedingungen nicht mehr ausreicht, hat der Organismus verschiedene Kompensationsmechanismen entwickelt, um hier gegenzusteuern. Diese reichen von der Änderung der Sauerstoffbindungskurve, über die Expression von Isoenzymen der Atmungsketten, die mit weniger Sauerstoffpartialdruck ATP produzieren können, bis zur Polyglobulie. Medikamentös kann die Entlastung bei der Herzpumpe durch Betablocker, bei der Atempumpe durch Sauerstoff verstärkt werden.
Neuere Therapieverfahren verstärken diese Erholungsphasen. Beim Herzmuskel durch Bypass- oder intravasale Pumpen, bei der Atemmuskulatur durch elektive, meist nicht invasive Beatmung zu Hause. Gerade durch die letztere Maßnahme kommt es hier zu einer erheblichen Leistungszunahme, Verbesserung der Lebensqualität und Reduktion der Mortalität.
Herz- und Atemmuskelinsuffizienz haben viele gemeinsame Parallelen. Bedingt durch die gemeinsame Aufgabe, den Sauerstofftransport zu sichern, sind ihre Funktionen bzw. Kompensationsmechanismen eng gekoppelt.
Summary
Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation.
One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels.
The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fuelled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump.
The main function of cardiac and respiratory pump is maintenance of oxygen transport.
The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen.
Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory muscles may be supported through elective ventilatory support (mainly non-invasive) in the patient’s home. The latter treatment in particular will increase patient endurance and quality of life and decrease mortality.
Heart and respiratory pump failure share many common features. Since both take care of oxygen supply to the body, their function and compensatory mechanisms are closely related and linked
Schlüsselwörter
Herzinsuffizienz - Atemmuskulinsuffizienz - Atempumpe - Hypoxämie - Hyperkapnie
Keywords
heart failure - respiratory muscle failure - breathing pump - hypoxemia - hypercapnia
- 1
Abildgaard U, Aldershvile J, Ring-Larsen H. et al .
Bed rest and increased diuretic
treatment in chronic congestive heart failure.
Eur Heart
J.
1985;
6
1040-1046
Reference Ris Wihthout Link
- 2
Adamopoulos C, Zannad F, Fay R. et
al .
Ejection fraction and blood pressure are important
and interactive predictors of 4-week mortality in severe acute heart
failure.
Eur J Heart Fail.
2007;
9
935-941
Reference Ris Wihthout Link
- 3
Aida A, Miyamoto K, Nishimura M. et al .
Prognostic value of hypercapnia in patients
with chronic respiratory failure during long-term oxygen therapy.
Am J Respir Crit Care Med.
1998;
158
188-193
Reference Ris Wihthout Link
- 4
Antonelli M, Pennisi M A, Montini L.
Clinical review: Noninvasive ventilation in the clinical setting
experience from the past 10 years.
Crit Care.
2005;
9
98-103
Reference Ris Wihthout Link
- 5
Bégin P, Grassino A.
Chronic alveolar hypoventilation
helps to maintain the inspiratory muscle effort of COPD patients
within sustainable limits.
Chest.
2000;
117
271S-273S
Reference Ris Wihthout Link
- 6
Bégin P, Grassino A.
Inspiratory muscle
dysfunction and chronic hypercapnia in chronic obstructive pulmonary
disease.
Am Rev Respir Dis.
1991;
143
905-912
Reference Ris Wihthout Link
- 7
Benditt J, Pollock M, Roa J, Celli B.
Transtracheal delivery of
gas decreases the oxygen cost of breathing.
Am Rev Respir
Dis.
1993;
147
1207-1210
Reference Ris Wihthout Link
- 8
Bergofsky E H, Hurewitz A N.
Airway insufflation:
physiologic effects on acute and chronic gas exchange in humans.
Am Rev Respir Dis.
1989;
140
885-890
Reference Ris Wihthout Link
- 9
Blankenburg T, Roloff D, Schädlich S. et al .
Rekompensation von schwerem hyperkapnischem
Versagen bei Patienten mit COPD unter 4 Wochen intermittierender
nicht invasiver Heimbeatmung.
Pneumologie.
2008;
62
126-131
Reference Ris Wihthout Link
- 10
Boehmer J P.
Device therapy for heart failure.
Am J Cardiol.
2003;
91
53D-59D
Reference Ris Wihthout Link
- 11
Budweiser S, Hitzl A P, Jörres R A. et al .
Impact of noninvasive
home ventilation on long-term survival in chronic hypercapnic COPD:
a prospective observational study.
Int J Clin Pract.
2007;
61
1516-1522
Reference Ris Wihthout Link
- 12
Chailleux E, Fauroux B, Binet F. et al .
Predictors of survival in patients receiving
domiciliary oxygen therapy or mechanical ventilation. A 10-year analysis
of ANTADIR Observatory.
Chest.
1996;
109
741-749
Reference Ris Wihthout Link
- 13
De Feo P, Di Loreto C, Lucidi P. et al .
Metabolic response to exercise.
J
Endocrinol Invest.
2003;
26
851-854
Reference Ris Wihthout Link
- 14
de Groote P, Delour P, Mouquet F. et al .
The effects of beta-blockers in patients
with stable chronic heart failure. Predictors of left ventricular
ejection fraction improvement and impact on prognosis.
Am
Heart J.
2007;
154
589-595
Reference Ris Wihthout Link
- 15
Dellweg D, Haidl P, Siemon K. et al .
Impact of breathing pattern on work of breathing
in healthy subjects and patients with COPD.
Respir Physiol Neurobiol.
2008;
161
197-200
Reference Ris Wihthout Link
- 16
Dellweg D, Schonhofer B, Haidl P. et al .
Short-term effect of controlled instead
of assisted noninvasive ventilation in chronic respiratory failure due
to chronic obstructive pulmonary disease.
Respir Care.
2007;
52
1734-1740
Reference Ris Wihthout Link
- 17
Desai A V, Marks G, Grunstein R.
Does sleep deprivation worsen mild obstructive sleep apnea?.
Sleep.
2003;
15,26
1038-1041
Reference Ris Wihthout Link
- 18
Gorman R B, McKenzie D K, Butler J E. et al .
Diaphragm length and neural drive
after lung volume reduction surgery.
Am J Respir Crit
Care Med.
2005;
15,172
1259-1266
Reference Ris Wihthout Link
- 19
Hoshi H, Shinshi T, Takatani S.
Third-generation blood pumps with mechanical noncontact magnetic
bearings.
Artif Organs.
2006;
30
324-338
Reference Ris Wihthout Link
- 20
Jacobs I, Kaiser P, Tesch P.
Muscle strength and fatigue after selective glycogen depletion
in human skeletal muscle fibers.
Eur J Appl Physiol Occup
Physiol.
1981;
46
47-53
Reference Ris Wihthout Link
- 21
Kalis J K, Freund B J, Joyner M J. et al .
Effect of beta-blockade
on the drift in O2 consumption during prolonged exercise.
J
Appl Physiol.
1988;
64
753-758
Reference Ris Wihthout Link
- 22
Kim Y J, Bazzy A R.
Glycogen content
in neonatal diaphragmatic fibers in response to inspiratory flow
resistive loads.
Pediatr Res.
1992;
31
354-358
Reference Ris Wihthout Link
- 23
Köhler D.
CaO2-Wert zur Beurteilung der Sauerstoff-Organversorgung: Klinische
Bedeutung des Sauerstoffgehaltes.
Dtsch Arztebl.
2005;
102
28-29
Reference Ris Wihthout Link
- 24
Lightowler J V, Wedzicha J A, Elliott M W, Ram F S.
Non-invasive
positive pressure ventilation to treat respiratory failure resulting
from exacerbations of chronic obstructive pulmonary disease: Cochrane
systematic review and meta-analysis.
BMJ.
2003;
326
185
Reference Ris Wihthout Link
- 25
Long term domiciliary oxygen therapy
in chronic hypoxic cor pulmonale complicating chronic bronchitis
and emphysema. Report of the Medical Research Council Working Party.
Lancet.
1981;
28
681-686
Reference Ris Wihthout Link
- 26
Mancini D, Benaminovitz A, Cordisco M E. et al .
Slowed glycogen utilization enhances
exercise endurance in patients with heart failure.
J Am
Coll Cardiol.
1999;
34
1807-1812
Reference Ris Wihthout Link
- 27
Manning H L, Schwartzstein R M.
Pathophysiology
of dyspnea.
N Engl J Med.
1995;
333
1547-1553
Reference Ris Wihthout Link
- 28
Miller L W, Pagani F D, Russell S D. et al, II Clinical Investigators .
Use
of a continuous-flow device in patients awaiting heart transplantation.
N Engl J Med.
2007;
357
885-896
Reference Ris Wihthout Link
- 29
Morgan T J.
The oxyhaemoglobin dissociation curve in critical illness.
Crit Care Resusc.
1999;
1
93-100
Reference Ris Wihthout Link
- 30
Musch T I, Moore R L, Riedy M. et al .
Glycogen concentrations and endurance capacity
of rats with chronic heart failure.
J Appl Physiol.
1988;
64
1153-1159
Reference Ris Wihthout Link
- 31
Nickol A H, Hart N, Hopkinson N S. et al .
Mechanisms of improvement of respiratory
failure in patients with restrictive thoracic disease treated with non-invasive
ventilation.
Thorax.
2005;
60
754-760
Reference Ris Wihthout Link
- 32
Oeckler R A, Hubmayr R D.
Ventilator-associated
lung injury: a search for better therapeutic targets.
Eur
Respir J.
2007;
30
1216-1226
Reference Ris Wihthout Link
- 33
Petrozzino J J, Scardella A T, Edelman N H, Santiago T V.
Respiratory
muscle acidosis stimulates endogenous opioids during inspiratory
loading.
Am Rev Respir Dis.
1992;
147
607-615
Reference Ris Wihthout Link
- 34
Poole D C, Kindig C A, Behnke B J.
Effects of emphysema on diaphragm microvascular
oxygen pressure.
Am J Respir Crit Care Med.
2001;
163
1081-1086
Reference Ris Wihthout Link
- 35
Proske U, Morgan D L.
Muscle damage
from eccentric exercise: mechanism, mechanical signs, adaptation
and clinical applications.
J Physiol.
2001;
537
333-345
Reference Ris Wihthout Link
- 36
Raman J, Jeevanadam V.
Destination therapy with
ventricular assist devices.
Cardiology.
2004;
101
104-110
Reference Ris Wihthout Link
- 37
Roussos C, Koutsoukou A.
Respiratory failure.
Eur Respir J Suppl.
2003;
47
3s-14s
Reference Ris Wihthout Link
- 38
Schiffman P L, Trontell M C, Mazar M F, Edelman N H.
Sleep
deprivation decreases ventilatory response to CO2 but not load compensation.
Chest.
1983;
84
695-698
Reference Ris Wihthout Link
- 39
Schönhofer B, Ardes P, Geibel M. et al .
Evaluation of a movement detector to measure
daily activity in patients with chronic lung disease.
Eur
Respir J.
1997;
10
2814-2819
Reference Ris Wihthout Link
- 40
Schönhofer B, Barchfeld T, Wenzel M, Köhler D.
Long term effects
of non-invasive mechanical ventilation on pulmonary haemodynamics
in patients with chronic respiratory failure.
Thorax.
2001;
56
524-528
Reference Ris Wihthout Link
- 41
Schönhofer B, Geibel M, Sonneborn M. et al .
Daytime mechanical ventilation in chronic
respiratory insufficiency.
Eur Respir J.
1997;
10
2840-2846
Reference Ris Wihthout Link
- 42
Schönhofer B, Sonneborn M, Haidl P. et al .
Comparison of two different modes for noninvasive
mechanical ventilation in chronic respiratory failure: volume versus
pressure controlled device.
Eur Respir J.
1997;
10
184-191
Reference Ris Wihthout Link
- 43
Simon L M, Robin E D, Phillips J R. et al .
Enzymatic basis for bioenergetic
differences of alveolar versus peritoneal macrophages and enzyme
regulation by molecular O2.
J Clin Invest.
1977;
59
443-448
Reference Ris Wihthout Link
- 44
Simonds A K.
Home ventilation.
Eur Respir J Suppl.
2003;
47
38s-46s
Reference Ris Wihthout Link
- 45
Simonds A K.
Recent advances in respiratory care for neuromuscular disease.
Chest.
2006;
130
1879-1886
Reference Ris Wihthout Link
- 46
Stavrianeas S, Spangenburg E, Batts T. et al .
Prolonged exercise potentiates sarcoplasmic
reticulum Ca2+ uptake in rat diaphragm.
Eur J
Appl Physiol.
2003;
89
63-68
Reference Ris Wihthout Link
- 47
Terrados N, Jansson E, Sylvén C, Kaijser L.
Is hypoxia a stimulus
for synthesis of oxidative enzymes and myoglobin?.
J Appl
Physiol.
1990;
68
2369-2372
Reference Ris Wihthout Link
- 48
Weitzenblum E, Chaouat A.
Sleep and chronic obstructive
pulmonary disease.
Sleep Med Rev.
2004;
8
281-294
Reference Ris Wihthout Link
- 49
Woodson R D, Torrance J D, Shappell S D, Lenfant C.
The effect
of cardiac disease on hemoglobin-oxygen binding.
J Clin
Invest.
1970;
49
1349-1356
Reference Ris Wihthout Link
- 50
Young A C, Wilson J W, Kotsimbos T C, Naughton M T.
Randomised
placebo controlled trial of non-invasive ventilation for hypercapnia
in cystic fibrosis.
Thorax.
2008;
63
72-77
Reference Ris Wihthout Link
Prof. Dr. Dieter Köhler
Krankenhaus Kloster Grafschaft, Pneumologie,
Allergologie, Beatmungs- und Schlafmedizin
57392
Schmallenberg
Telefon: 02972/791-2501
eMail: d.koehler@fkkg.de