RSS-Feed abonnieren
DOI: 10.1055/s-0028-1105867
© Georg Thieme Verlag KG Stuttgart · New York
Resorption von proteolytischen Enzymen
Absorption of proteolytic enzymesPublikationsverlauf
eingereicht: 11.12.2007
akzeptiert: 6.11.2008
Publikationsdatum:
11. Dezember 2008 (online)

Im deutschen Arzneimittelmarkt gibt es nicht viele oral zu verabreichende Arzneimittel auf der Basis von Enzymen. Sie können – teilweise neben Rutosid, das als Flavonoid im Entzündungsgeschehen Radikale neutralisieren kann – weitere Eiweiß spaltende Enzyme tierischen und pflanzlichen Ursprungs enthalten. Als tierische Serinproteinasen kommen die in der Tab. [1] gelisteten Wirkstoffe Trypsin, Pankreatin und Chymotrypsin und als pflanzliche Cysteinproteinasen Bromelain und Papain in Dosierungen zwischen 1 und 200 mg pro Tablette zum Einsatz. Die Enzymaktivität wird häufig in so genannten F.I.P.-Einheiten (Einheiten der Fédération Internationale Pharmaceutique) angegeben. Eine F.I.P.-Einheit ist diejenige Enzymmenge, die in einer Minute unter Standardbedingungen 1 µmol Substrat umsetzt.
Tab. 1 Übersicht der Wirkstoffe dreier Fertig-Enzympräparate. Inhaltsstoff Präparat 1 Präparat 2 Präparat 3 Bromelain 90 mg = 450 F.I.P.-Einheiten 45 mg = 225 F.I.P.-Einheiten 133 – 178 mg = 800 F.I.P.-Einheiten Papain – 60 mg – 164 F.I.P.-Einheiten – Pankreatin 100 mg = 300 Ph.Eur.-Einheiten Proteinase Chymotrypsin – 1 mg = 300 F.I.P.-Einheiten – Trypsin 48 mg = 1 440 F.I.P.-Einheiten = 24 µkat* 24 mg = 720 F.I.P.-Einheiten = 12 µkat – Rutosid 100 mg 50 mg – * 1 µkat ist die Menge Enzym, die 1 µM Substrat pro Sekunde umsetzt. Dies wiederum entspricht 60 U (International Units).
Die Resorption solcher Enzyme wird heute immer noch häufig in Frage gestellt und insbesondere im Hinblick auf die möglichen bioverfügbaren und aktiven Mengen vielfach unterschätzt, obwohl sich am Beispiel des Botulinumtoxins nicht nur der Größenrahmen (> 200 kDa) einer möglichen Resorption, sondern auch die Effektivität trotz geringer Resorptionsmengen bestätigen lässt.
Literatur
- 1
Barrett A J, Starkey P M.
The Interaction of α2-Macroglobulin with Proteinases.
Biochem J.
1973;
133
709-724
MissingFormLabel
- 2
Bhattacharjee G, Asplin A R, Wu S M, Gawdi G, Pizzo S V.
The Conformation-dependent Interaction of α2-Macroglobulin
with Vascular Endothelial Growth Factor.
J Biol Chem.
2000;
275
26 806-26 811
MissingFormLabel
- 3
Birkenmeyer G, Usbeck E, Schaffer A, Otto A, Glander H J.
Prostate-specific antigen triggers transformation of seminal
alpha-2-macroglobulin (alpha-2-M) and its binding to alpha-2-macroglobulin
receptor/ low-density lipoprotein receptor-related protein
(α2-M-R/LRP) on human spermatozoa.
The
Prostate.
1998;
36
219-225
MissingFormLabel
- 4
Borth W.
α2-Macroglobulin, a multifunctional binding protein
with targeting characteristics.
FASEB.
1994;
6
3345-3353
MissingFormLabel
- 5
Castell J V, Friedrich G, Kuhn C S, Poppe G E.
Intestinal absorption
of undegraded proteins in men: presence of bromelain in plasma after
oral intake.
Am J Physiol.
1997;
273
G139-146
MissingFormLabel
- 6 Castell J V.
Intestinal absorption of undegraded Bromelain in humans. In: Gardner MLG, Steffens KJ Absorption of orally administered Enzymes. Berlin; Springer Verlag 1995MissingFormLabel - 7
Déry O, Bunnett N W.
Proteinase-activated Receptors:
A Growing Family of Heptahelical Receptors for Thrombin, Trypsin
and Tryptase.
Biochem Soc Trans.
1999;
27
246-254
MissingFormLabel
- 8
Faudemay F, Laporte J C, Trémolières J.
Passage de la trypsine à travers
la paroi intestinale de rat in vitro.
Nutr Metab.
1973;
15
207-212
MissingFormLabel
- 9
Garber T R, Gonias, SL, Webb D J.
Interleukin-4 and IL-10 bind covalently
to activated human 2-macroglobulin by a mechanism that requires
Cys949.
J Interferon Cytokine Res.
2000;
20
125-131
MissingFormLabel
- 10 Gardner M LG.
A review of current knowledge of gastrointestinal absorption of intact proteins including medicinal preparations of proteolytic enzymes. In: Gardner MLG, Steffens KJ Absorption of orally administered Enzymes. Berlin; Springer Verlag 1995MissingFormLabel - 11 Gerbert G.
Modes of absorption of macromolecular substances. In: Gardner MLG, Steffens KJ Absorption of orally administered Enzymes. Springer Verlag Berlin; 1995MissingFormLabel - 12
Heinrich H C, Gabbe E E, Brüggemann J, Icagic F, Classen.
Enterohepatic circulation of trypsin in man.
Klin
Wochensch.
1979;
57
1295-1297
MissingFormLabel
- 13
Hollenberg M D, Houle S.
Proteinase
as Hormone-like Signal Messengers – Proteinase-activated
receptors and the pathophysiology of inflammation, pain, cardiovascular disease
and cancer.
Swiss Med Wkly.
2005;
135
425-436
MissingFormLabel
- 14
Jani P U, Florence A T, McCarthy D E.
Further histological evidence of gastrointestinal absorption
of polystyrene nanoparticles in rat.
Int J Pharmaceut.
1992a;
84
245-252
MissingFormLabel
- 15
Jani P U, Halbert G H, Landbridge J, Florence A T.
Nanoparticle
uptake by the rat gastrointestinal mucosa: Quantitation and particle
size dependency.
J Pharm Pharmacol.
1990;
42
821-826
MissingFormLabel
- 16
Jani P U, McCarthy D E, Florence A T.
Nanosphere and microsphere uptake via Peyer’s patches:
Observation of the rate of uptake in the rat after single oral dose.
Int J Pharmaceut.
1992b;
86
239-246
MissingFormLabel
- 17 Klimek R. Gutachterliche Stellungnahme zu Wobenzym N. Mucos 2006
MissingFormLabel
- 18
Kolac C, Streichhan P, Lehr C M.
Oral bioavailability of proteolytic enzymes.
Europ
J Pharma Biopharm.
1996;
42
222-232
MissingFormLabel
- 19
Kounnas M Z, Church F, Argraves W S, Strickland D K.
Cellular Internalization and Degradation of Antithrombin III-Thrombin, Heparin
Cofactor II-Thrombin, and a1-Antitrypsin-Trypsin Complexes Is Mediated by
the Low Density Lipoprotein Receptor-related Protein.
J
Biol Chem.
1996;
271
6523-5429
MissingFormLabel
- 20
Lake-Bakaar G, Smith-Laing G, Summerfield J A.
Origin of circulating serum immunoreative
Trypsin in man.
Dig Dis Sci.
1982;
27
143-148
MissingFormLabel
- 21
LaMarre J, Hayes M A, Wollenberg G K, Hussaini I, Hall S W, Gonias S L.
An α2-macroglobulin receptor-dependent mechanism for
the plasma clearance of transformimg growth factor β1 in
mice.
J Clin Invest.
1991b;
87
39-44
MissingFormLabel
- 22
LaMarre J, Wollenberg G K, Gonias S L, Hayes M A.
Biology
of disease. Cytokine binding and clearance properties of proteinase-activated α2-macroglobulins.
Lab Invest.
1991a;
65
3-14
MissingFormLabel
- 23
Layer P, GO V LW, DiMagno E P.
Fate of pancreatic enzymes during intestinal
aboral transit in humans.
Physiol Rev.
1986;
251
G475-G480
MissingFormLabel
- 24 Lee V HL.
Oral route of peptides and protein drug delivery. In: Gardner MLG, Steffens KJ Absorption of orally administered Enzymes. Springer Verlag Berlin;MissingFormLabel - 25
Lehmann P V.
Immunomodulation by proteolytic enzymes.
Nephrol Dial Transplant.
1996;
1
953-955
MissingFormLabel
- 26
Martin G J, Brendel R, Beiler M.
Absorption of enzymes from the intestinal tract.
Am
J Pharm.
1957;
127
194-197
MissingFormLabel
- 27
Megel H, Strauss R, Ho R, Beiler M.
Detection of Trypsin-like
activity in plasma of rats after oral administration of Trypsin.
Arch Biochem Biophys.
1964;
108
193-199
MissingFormLabel
- 28
Miller J M, Opher A W.
The increased
proteolytic activity of human blood serum after oral administration
of Bromelain.
Exp Med Surg.
1964;
22
277-280
MissingFormLabel
- 29
Moraga F, Lindgren S, Janciauskiene S.
Effects of noninhibitory α1-antitrypsin on primary
human monocyte activation in itro.
Arch Biochem Biophys.
2001;
386
221-226
MissingFormLabel
- 30
Moriya H, Moriwaki C, Akimoto S, Yamaguchi K, Iwadara M.
Studies on the passage of α-chymotrypsin across the
intestine.
Chem Pharm Bull.
1967;
15
1662-1668
MissingFormLabel
- 31
Roep B O, van den Engel N K, van Halteren A GS, Duinkerken G, Martin S.
Modulation of autoimmunity
to beta-cell antigen by proteases.
Diabetol.
2002;
45
686-692
MissingFormLabel
- 32 Roots I, Donath F, Rex A, Mai I. Pilotstudie zur Untersuchung
der relativen Bioverfügbarkeit von Trypsin aus zwei Peroralia. Berlin; Institut für Klinische Pharmakologie 1995
MissingFormLabel
- 33 Roots I. Bioverfügbarkeit von Trypsin, Bromelain und Rutin-Metaboliten
nach oraler Gabe von Phlogenzym® bei gesunden Probanden.
Randomisierte doppelblinde Crossover-Studie gemäß GCP.
Study No MU-695 427. Berlin, Germany; Institut
für Klinische Pharmakologie der Med. Fakultät Humboldt-Universität 1997
MissingFormLabel
- 34
Rubas W, Jezy N, Grass G M.
Mechanism of dextran transport across rabbit intestinal tissue
and a human colon cell-line (Caco-2).
J Drug Target.
1995;
3
15-21
MissingFormLabel
- 35
Seifert J, Ganser R, Brendel W.
Absorption of a proteolytic enzyme originating from plants out
of the gastrointestinal tract into blood and lymph of rats.
Z
Gastroenterol.
1979;
17
1-8
MissingFormLabel
- 36 Seifert J, Siebrecht D, Lange J P, Axt G, Bambas F B.
The quantitative absorption or orally administered proteins and histological evidence of enzymes in the wound. In: Gardner MLG, Steffens KJ Absorption of orally administered Enzymes. Berlin; Springer Verlag 1995MissingFormLabel - 37
Shah R B, Khan M A.
Regional Permeability of
Salmon Calcitonin in Isolated Rat Gastrointestinal Tracts: Transport
Mechanism Using Caco-2 Cell Monolayer.
AAPS J.
2004;
6
(4)
, article
31; DOI: 10.1208/aapsj060431
MissingFormLabel
- 38
Skogh T.
Overestimate of 125J-protein uptake from adult mouse gut.
Gut.
1982;
23
1077-1080
MissingFormLabel
- 39
Steffen C, Menzel J.
Basic studies on enzyme therapy
of immune complex diseases.
Wien Klin Wochenschr.
1985;
97
376-385
MissingFormLabel
- 40 Steffens K J. Partikuläre Verunreinigungen als
unvermeidliche Risikofaktoren der Infusionstherapie. University
of Marburg, Germany; Habilitation thesis 1987
MissingFormLabel
- 41
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger T A, Hollenberg M D.
Proteinase-activated
receptors: Transducers of Proteinase-mediated signaling in inflammation
and immune response.
Endocrine Rev.
2005;
26
1-43
MissingFormLabel
- 42
van Schaik W, Kleine M W.
Serum Hydrolytic
Activity and Oral Enzyme Therapy.
Eur J Inf Immunol Dis.
1996;
Supplement
30-38
MissingFormLabel
- 43
Volkheimer G, Schulz F H, Lindenau A, Beitz U.
Persorption of metallic
iron particles.
Gut.
1069;
10
32-33
MissingFormLabel
- 44 Volkheimer G. Durchlässigkeit der Darmschleimhaut für großkorpuskuläre
Elemente. University of Berlin, Germany; Habilitation
thesis 1962
MissingFormLabel
- 45
Walker W A, Isselbacher K J.
Uptake
and transport of macromolecules by the intestine. Possible role
in clinical disorders.
Gastroenterology.
1974;
67
531-550
MissingFormLabel
- 46
White R R, Crawley F EA, Vellini M, Rovati L.
Bioavailability of125J-Bromelain
after oral administration to rats.
Biopharmaceut Drug
Dispos.
1988;
9
397-403
MissingFormLabel
- 47 Wilson C G, Washington N. Physiological Pharmaceutics. Chichester, UK; Ellis Harwood Limited Publishers 1989
MissingFormLabel
- 48
Wu S M, Dhavalkumar D P, Pizzo S V.
Oxidized α2-Macroglobulin (α2-M)
Differentially Regulates Receptor Binding by Cytokines/Growth
Factors: Implications for Tissue Injury and Repair Mechanisms in
Inflammation.
J Immunol.
1998;
161
4356-4365
MissingFormLabel
- 49
Wu, SM, Boyer C M, Pizzo S V.
The Binding of Receptor-recognized α2-Macroglobulin to
the Low Density Lipoprotein Receptor-related Protein and the α2M
Signaling Receptor is Decoupled by Oxidation.
J Biol Chem.
1997;
272
20627-20635
MissingFormLabel
Dr. G. Lorkowski
Pharma CF & E
Leutstettenerstr.
6
82131 Gauting
Telefon: 089/803636
eMail: gerhard.Lorkowski@gmx.de