Subscribe to RSS
DOI: 10.1055/s-0028-1088150
Synthesis of Highly Functionalized Proline Derivatives via a One-pot Michael/Aldol Addition-Cyclization Approach
Publication History
Publication Date:
20 March 2009 (online)

Abstract
Chelated enolates undergo Michael addition towards halogenated α,β-unsaturated esters in a highly stereoselective fashion. The enolates formed can be trapped with aldehydes in a stereoselective aldol reaction, before subsequent cyclization gives rise to substituted proline derivative. Up to for stereogenic centers can be formed in this new one-pot reaction.
Key words
aldol reaction - amino acids - chelates - cyclization - Michael addition - one-pot reaction
- 1a
Shimamoto K.Ohfune Y. J. Med. Chem. 1996, 39: 407 ; and references cited thereinReference Ris Wihthout Link - 1b
Shimamoto K.Ohfune Y. Synlett 1993, 919Reference Ris Wihthout Link - 1c
Ornstein PL.Bleisch TJ.Arnold MB.Wright RA.Johnson BG.Schoepp DD. J. Med. Chem. 1998, 41: 346Reference Ris Wihthout Link - 1d
Pellicciari R.Costantino G. Curr. Opin. Chem. Biol. 1999, 3: 433Reference Ris Wihthout Link - 1e
Moloney MG. Nat. Prod. Rep. 1999, 16: 485 ; and references cited thereinReference Ris Wihthout Link - 2
Nitta I.Watase H.Tomiie Y. Nature (London) 1958, 181: 761 - 3 For a recent review, see:
Wang Q.Yu S.Simonyi A.Sun G.Sun A. Mol. Neurobiol. 2005, 31: 3 ; and references cited therein - 4
Sperk G. Prog. Neurobiol. 1994, 42: 1 - 5a
Goodenough S.Schleusner D.Pietrzik C.Skutella T.Behl C. Neuroscience 2005, 132: 581Reference Ris Wihthout Link - 5b
Mohmmad A.Sultana R.Keller J.St. Clair D.Markesbery W.Butterfield D. J. Neurochem. 2006, 96: 1322Reference Ris Wihthout Link - 6a
Coyle JT.Schwarcz R. Nature (London) 1976, 263: 244Reference Ris Wihthout Link - 6b
McGeer EG.McGeer PL. Nature (London) 1976, 263: 517Reference Ris Wihthout Link - 7
Yoo S.Lee S.Kim N. Tetrahedron Lett. 1988, 29: 2195 - 8
Carpes MJS.Miranda P.Correira CR. Tetrahedron Lett. 1997, 38: 1869 - 9
Sabol J.Flynn G.Friedrich D.Huber EW. Tetrahedron Lett. 1997, 38: 3687 - 10
Karoyan P.Chassaing G. Tetrahedron Lett. 2002, 43: 253 - Reviews:
- 11a
Kazmaier U. Amino Acids 1996, 11: 283Reference Ris Wihthout Link - 11b
Kazmaier U. Liebigs Ann./Recl. 1997, 285 ; and references cited thereinReference Ris Wihthout Link - 12a
Pohlman M.Kazmaier U. Org. Lett. 2003, 5: 2631Reference Ris Wihthout Link - 12b
Pohlman M.Kazmaier U.Lindner T. J. Org. Chem. 2004, 69: 6909Reference Ris Wihthout Link - 12c
Mendler B.Kazmaier U.Huch V.Veith M. Org. Lett. 2005, 7: 2643Reference Ris Wihthout Link - 12d
Mendler B.Kazmaier U. Synthesis 2005, 2239Reference Ris Wihthout Link - 13a
Kazmaier U.Zumpe FL. Eur. J. Org. Chem. 2001, 4067Reference Ris Wihthout Link - 13b
Kazmaier U. Curr. Org. Chem. 2003, 317Reference Ris Wihthout Link - 13c
Kazmaier U.Pohlman M. Synlett 2004, 623Reference Ris Wihthout Link - 13d
Kazmaier U.Lindner T. Angew. Chem. Int. Ed. 2005, 44: 3303 ; Angew. Chem. 2005, 117, 3368Reference Ris Wihthout Link - 13e
Bauer M.Kazmaier U. Recent Res. Devel. Org. Chem. 2005, 9: 49Reference Ris Wihthout Link - 14
Schmidt C.Kazmaier U. Org. Biomol. Chem. 2008, 6: 4643 - 15
Schmidt C.Kazmaier U. Eur. J. Org. Chem. 2008, 887 - 16a
Grandel R.Kazmaier U.Nuber B. Liebigs Ann. 1996, 1143Reference Ris Wihthout Link - 16b
Grandel R.Kazmaier U. Tetrahedron Lett. 1997, 38: 8009Reference Ris Wihthout Link - 16c
Grandel R.Kazmaier U. J. Org. Chem. 1998, 63: 4524Reference Ris Wihthout Link - 16d
Kummeter M.Kazmaier U. Eur. J. Org. Chem. 2003, 3325Reference Ris Wihthout Link - 18 No epimerization of the ester 7a was observed. According to Seebach et
al. LHMDS is not able to deprotonate amino acid esters except glycine
and sarcosine, see:
Seebach D.Beck AK.Studer A. In Modern Synthetic Methods Vol. 7:Ernst B.Leumann C. Verlag Helvetica Chimica Acta; Basel: 1995. p.1-178 ; and references cited thereinReference Ris Wihthout Link - 20a
Weygand F.Frauendorfer E. Chem. Ber. 1970, 103: 2437Reference Ris Wihthout Link - 20b
Bergeron RJ.McManis JS. J. Org. Chem. 1988, 53: 3108Reference Ris Wihthout Link - 20c
Kazmaier U.Krebs A. Tetrahedron Lett. 1999, 40: 479Reference Ris Wihthout Link
References and Notes
In some cases the reactions of chelated enolates with aromatic aldehydes proceed with low diastereoselectivicity, probably because of the reversibility of the aldol process.
19It should be mentioned, that NMR is not a suitable method for determination of the isomeric ratios, because in addition to the signals of the different isomers, in general a double set of signals is observed caused by rotamers (hindered rotation around the secondary amide bond).
21
General Procedure
for Domino Michael-Aldol Additions-Cyclizations
In a Schlenk flask
HMDS (0.3 mL, 1.42 mmol) was dissolved in THF (2 mL). The solution
was cooled to -78 ˚C before n-BuLi
(1.6 M, 0.78 mL, 1.25 mmol) was added. The cooling bath was removed
and the solution was allowed to warm up for 15 min, before it was
cooled again to -78 ˚C. In a second Schlenk
flask ZnCl2 (80 mg, 0.57 mmol) was dried with a heat
gun in high vacuum, before it was dissolved in THF (3 mL). After
addition of TFA-Gly-Ot-Bu (115 mg, 0.5 mmol)
the solution was cooled to -78 ˚C, before
the fresh prepared LHMDS solution was added. Then, 15 min later, the
Michael acceptor (0.45 mmol) was added in THF (2 mL). After 2 h
the corresponding aldehyde (1-1.5 mmol) was added and the
reaction mixture was allowed to r.t. overnight. The solution was
diluted with Et2O before 1 N KHSO4 was added.
The layers were separated, the aqueous phase was washed twice with
CH2Cl2, and the combined organic layers were
dried (Na2SO4). After evaporation of the solvent
in vacuo the crude product was purified by flash chromatography
(SiO2, hexanes-EtOAc).
Spectroscopic
and Analytical Data of Selected Products 9
Compound 9a
Major rotamer, (2S,3S,4R,5R)-9a: ¹H NMR (500 MHz, CDCl3): δ = 0.91
(d, J = 6.6
Hz, 2 H), 1.00 (d, J = 6.5
Hz, 2 H), 1.45 (s, 9 H), 1.56 (m, 1 H), 1.94 (m, 1 H), 2.24 (m,
1 H), 2.54 (dd, J = 11.6,
2.6 Hz, 1 H), 3.01 (m, 1 H), 3.21 (ddd, J = 12.2,
9.9, 2.4 Hz, 1 H), 3.29 (br s, 1 H), 3.63 (m, 1 H), 3.75 (s, 3 H),
3.98 (dd, J = 9.8,
9.8 Hz, 1 H), 4.38 (d, J = 7.9 Hz,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.2,
19.8, 27.6, 27.7, 33.1, 40.2, 46.1 (J = 3.0
Hz), 47.5, 52.0, 62.9, 77.4, 83.0, 115.8 (J = 287.6
Hz), 157.3 (J = 37.4
Hz), 168.8, 172.2.
Minor rotamer (selected signals): ¹H
NMR (500 MHz, CDCl3): δ = 1.44
(s, 9 H), 1.78 (m, 1 H), 2.53 (dd, J = 11.5, 2.5
Hz, 1 H), 3.12 (m, 1 H), 3.77 (s, 3 H), 3.83 (dd, J = 11.9, 10.0
Hz, 1 H), 4.48 (dd, J = 7.4,
1.4 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 24.4,
32.0, 42.8, 47.9, 52.0, 61.8 (J = 2.7 Hz),
83.3, 168.9, 172.5.
Major rotamer, (2S,3S,4R,5S)-9a: ¹H
NMR (500 MHz, CDCl3): δ = 0.89
(d, J = 6.8
Hz, 2 H), 1.02 (d, J = 6.7
Hz, 2 H), 1.43 (m, 1 H) 1.44 (s, 9 H), 1.80 (m, 1 H), 2.04 (m, 1
H), 2.57 (dd, J = 7.8,
2.5 Hz, 1 H), 2.62 (br s, 1 H), 3.02 (m, 1 H), 3.56-3.65
(m, 2 H), 3.71 (s, 3 H), 3.98 (dd, J = 10.1,
9.4 Hz, 1 H), 4.61 (d, J = 7.8
Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.1,
19.7, 27.9, 28.0, 34.2, 39.6, 46.0 (J = 3.5 Hz),
47.7, 51.9, 62.8, 75.6, 83.1, 168.1, 174.4.
Minor rotamer
(selected signals): ¹H NMR (500 MHz, CDCl3): δ = 1.45
(s, 9 H), 3.11 (m, 1 H), 3.72 (s, 3 H), 4.65 (dd, J = 7.4,1.4
Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.0,
19.7, 47.1, 61.6 (J = 2.8
Hz), 83.6, 168.0, 174.2. GC (isothermic, 170 ˚C): t
R [(±)-(2S,3S,4R,5S)-9a] = 39.96 min; t
R [(±)-(2S,3S,4R,5R)-9a] = 49.87
min. HMRS (CI):
m/z [M + H]+ calcd
for C18H29F3NO6: 412.1947;
found: 412.1991. Anal. Calcd for C18H28F3NO6 (411.42):
C, 52.55; H, 6.86; N, 3.40. Found: C, 52.37; H, 6.71; N, 3.42.
Compound 9b
Major rotatmer, (2S,3S,4R,5R)-9b: ¹H NMR (500 MHz, CDCl3): δ = 0.89
(s, 9 H, 15-H), 1.46 (s, 9 H, 7-H), 1.50 (br s, 1 H), 2.02 (m, 1
H), 2.29 (m, 1 H), 2.58 (dd, J = 11.2,
2.3 Hz, 1 H), 2.92 (m, 1 H), 3.32 (dd, J = 10.3,
2.1 Hz, 1 H), 3.64 (m, 1 H), 3.74 (s, 3 H), 3.97 (dd, J = 9.8, 9.8
Hz, 1 H), 4.34 (d, J = 7.6
Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 26.0, 27.7,
27.8, 35.8, 42.1, 44.8, 46.0 (J = 3.5
Hz), 52.1, 62.8, 79.1, 82.9, 115.8 (J = 287.6
Hz), 157.3 (J = 37.4
Hz), 168.6, 174.4.
Minor rotamer (selected signals): ¹H
NMR (500 MHz, CDCl3): δ = 0.89
(s, 9 H), 1.45 (s, 9 H), 1.87 (m, 1 H), 2.56 (dd, J = 11.3,
2.2 Hz, 1 H), 3.03 (m, 1 H), 3.35 (dd, J = 10.0, 2.0
Hz, 1 H), 3.75 (s, 3 H), 3.82 (dd, J = 11.5,
10.3 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 27.7,
35.8, 45.0, 45.4, 79.1, 83.3, 169.7, 174.2. GC (isothermic, 180 ˚C): t
R [(±)-(2S,3S,4R,5S)-9b] = 32.33
min; t
R [(±)-(2S,3S,4R,5R)-9b] = 35.17
min. Anal. Calcd for C19H30F3NO6 (425.44):
C, 53.64; H, 7.11; N, 3.29. Found: C, 53.76; H, 6.85; N, 3.41.
Compound 9e
Major rotamer, (2S,3S,4R,5R)-9e: ¹H NMR (500 MHz, CDCl3): δ = 0.96
(t, J = 7.4
Hz, 3 H), 1.43 (s, 9 H), 1.50 (m, 2 H), 1.87 (br s, 1 H), 1.94 (m,
1 H), 2.25 (m, 1 H), 2.54 (dd, J = 11.6,
2.7 Hz, 1 H), 3.00 (m, 1 H), 3.59-3.66 (m, 2 H), 3.74 (s,
3 H), 3.97 (dd, J = 9.7,
9.7 Hz, 1 H), 4.45 (d, J = 8.0 Hz,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 10.5,
27.7, 27.8, 29.1, 39.7, 46.2 (J = 3.4
Hz), 49.9, 51.9, 62.9, 72.9, 83.0, 116.1 (J = 287.4
Hz), 155.9 (J = 37.4
Hz), 168.8, 172.3.
Minor rotamer (selected signals): ¹H
NMR (500 MHz, CDCl3): δ = 1.42
(s, 9 H), 1.78 (m, 1 H), 2.33 (dd, J = 11.6, 2.7
Hz, 1 H), 3.11 (m, 1 H), 3.75 (s, 3 H), 3.82 (dd, J = 10.0, 10.0
Hz, 1 H), 4.50 (dd, J = 7.4,
1.0 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 42.7,
47.2, 61.8 (J = 2.7
Hz), 72.8, 83.4, 168.9, 172.2. The signals of the minor diastereomer
could not be separated from these of the major isomers.
GC
(155 ˚C, 60 min; 5˚/min; 180 ˚C,
3 min): t
R [(±)-(2S,3S,4R,5S)-9e] = 66.10
min; t
R [(±)-(2S,3S,4R,5R)-9e] = 75.16
min. Anal. Calcd for C17H26F3NO6 (397.39):
C, 51.38; H, 6.56; N, 3.52. Found: C, 50.98; H, 6.37; N, 3.56.
Unfortunately the aldol products obtained with aromatic aldehydes could not be analyzed by GC; NMR has to be used in this case. Therefore, we were not able to determine exact ratios, but the NMR spectra indicated that the isomers were formed in comparable amounts.