Synthesis 2009(10): 1744-1752  
DOI: 10.1055/s-0028-1088075
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Diastereoselective Conjugate Addition-Elimination of Chiral Nickel(II) Glycinate with Activated Allylic Acetates for Asymmetric Synthesis of Glutamic Acid Derivatives

Jiang Wang, Jianmei Shi, Xiaodong Zhang, Daizong Lin, Hualiang Jiang, Hong Liu*
The Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, P. R. of China
Fax: +86(21)50807088; e-Mail: hliu@mail.shcnc.ac.cn;
Further Information

Publication History

Received 13 March 2009
Publication Date:
27 April 2009 (online)

Abstract

A practically feasible, diastereoselective conjugate addition-elimination reaction of a chiral nickel(II) complex of glycine 1 with allylic acetates 2 is described. The reaction pathway was successfully controlled, and the desired formation of a carbon-carbon bond was exclusively obtained with high diastereoselectivity. This reaction is an attractive route for the asymmetric synthesis of previously unavailable chainlike glutamic acid derivatives.

    References

  • 1a Moloney MG. Nat. Prod. Rep.  1998,  15:  205 
  • 1b Bräuner-Osborne H. Egebjerg J. Nielsen E. Madsen U. Krogsgaard-Larsen P. J. Med. Chem.  2000,  43:  2609 
  • 1c Augelli-Szafran CE. Schwarz RD. Annu. Rep. Med. Chem.  2003,  38:  21 
  • 2a Kotnik M. Humljan J. Contreras-Martel C. Oblak M. Kristan K. Hervé M. Blanot D. Urleb U. Gobec S. Dessen A. Solmajer T. J. Mol. Biol.  2007,  370:  107 
  • 2b Baker SR. Bleakman D. Ezquerra J. Ballyk BA. Deverill M. Ho K. Kamboj RK. Collado I. Domíng C. Escribano A. Mateo AI. Pedregal C. Rubio A. Bioorg. Med. Chem. Lett.  2000,  10:  1807 
  • 3a Pei P.-S. Meng Y.-C. Michael YC. Nein C.-C. Org. Lett.  2003,  5:  1761 
  • 3b Hanessian S. Papeo G. Angiolini M. Fettis K. Beretta M. Munro A. J. Org. Chem.  2003,  68:  7204 
  • Stereoselective synthesis of 3-substituted glutamic acid derivatives:
  • 4a Soloshonok VA. Curr. Org. Chem.  2007,  6:  341 ; as a review other representative examples:
  • 4b Soloshonok VA. Cai C. Yamada T. Ueki H. Ohfune Y. Hruby VJ. J. Am. Chem. Soc.  2005,  127:  15296 
  • 4c Herdeis C. Kelm B. Tetrahedron  2003,  59:  217 
  • 4d Soloshonok VA. Cai C. Hruby VJ. Org. Lett.  2000,  2:  747 
  • 4e Yamada T. Okada T. Sakaguchi K. Ohfune Y. Ueki H. Soloshonok VA. Org. Lett.  2006,  8:  5625 
  • 5 Kobayashi S. Tsubogo T. Saito S. Yamashita Y. Org. Lett.  2008,  10:  807 
  • 6 Ramachandran PV. Madhi S. Bland-Berry L. Reddy MVR. O’Donnell MJ. J. Am. Chem. Soc.  2005,  127:  13450 
  • 7a Boyall D. Frantz DE. Carreira EM. Org. Lett.  2002,  4:  2605 
  • 7b Sorochinsky A. Voloshin N. Markovsky A. Belik M. Yasuda N. Uekusa H. Ono T. Berbasov DO. Soloshonok VA. J. Org. Chem.  2003,  68:  7448 
  • 7c Yasumoto M. Ueki H. Soloshonok VA. J. Fluorine Chem.  2007,  128:  736 
  • 8a Cai C. Yamada T. Tiwari R. Hruby VJ. Soloshonok VA. Tetrahedron Lett.  2004,  45:  6855 
  • 8b Belokon YN. Zel’tzer IE. Bakhmutov VI. Saporovaskaya MB. Ryzhov MG. Yanovsky AI. Struchkov YT. Belikov VM. J. Am. Chem. Soc.  1983,  105:  2010 
  • 8c Belokon YN. Pure Appl. Chem.  1992,  64:  1917 
  • 8d Belokon YN. Tararov VI. Maleev VI. Savel’eva TF. Ryzhov MG. Tetrahedron: Asymmetry  1998,  9:  4249 
  • 9a Belokon YN. Bulychev AG. Vitt SV. Struchkov YT. Batsanov AS. Timofeeva TV. Tsyryapkin VA. Ryzhov MG. Lysova LA. Bakhmutov VI. Belikov VM. J. Am. Chem. Soc.  1985,  107:  4252 
  • 9b Soloshonok VA. Kukhar VP. Galushko SV. Svistunova NY. Avilov DV. Kuzmina NA. Raevski NI. Struchkov YT. Pisarevsky AP. Belokon YN. J. Chem. Soc., Perkin Trans. 1  1993,  3143 
  • 9c Soloshonok VA. Avilov DV. Kukhar VP. Tetrahedron  1996,  52:  12433 
  • 9d Belokon YN. Sagyan AS. Djamgaryan SA. Bakhmutov VI. Vitt SV. Batsanov AS. Struchkov YT. Belikov VM. J. Chem. Soc., Perkin Trans. 1  1990,  2301 
  • 9e Belokon YN. Sagyan AS. Djamgaryan SM. Bakhmutov VI. Belikov VM. Tetrahedron  1988,  44:  5507 
  • 10a Soloshonok VA. Cai C. Hruby VJ. Angew. Chem. Int. Ed.  2000,  39:  2172 
  • 10b Soloshonok VA. Cai C. Hruby VJ. Tetrahedron Lett.  2000,  41:  9645 
  • 10c Cai C. Soloshonok VA. Hruby VJ. J. Org. Chem.  2001,  66:  1339 
  • 10d Belokon YN. Bulychev AG. Pavlov VA. Fedorova EB. Tsyryapkin VA. Bakhmutov VA. Belikov VM. J. Chem. Soc., Perkin Trans. 1  1988,  2075 
  • 11a Gu X. Tang X. Cowell S. Ying J. Hruby VJ. Tetrahedron Lett.  2002,  43:  6669 
  • 11b Taylor SM. Yamada T. Ueki H. Soloshonok VA. Tetrahedron Lett.  2004,  45:  9159 
  • 11c Soloshonok VA. Tang X. Hruby VJ. Meervelt LV. Org. Lett.  2001,  3:  341 
  • 11d Soloshonok VA. Boettiger TU. Bolene SB. Synthesis  2008,  2594 
  • 11e Belokon YN. Popkov AN. Saporovaskaya MB. Bakhmutov VI. Belikov VM. J. Chem. Soc., Chem. Commun.  1988,  1336 
  • 12 Jiang W. Ting S. Guang H.-D. Hua L.-J. Hong L. J. Org. Chem.  2008,  73:  8563