Synthesis 2009(7): 1153-1162  
DOI: 10.1055/s-0028-1087989
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Practical Syntheses of Enantiomerically Pure Key Intermediates of Opioid Receptor-like 1 (ORL1) Antagonists

Takashi Yoshizumi*a,b, Akio Ohnob, Tomohiro Tsujitab, Hirobumi Takahashib, Osamu Okamotob, Ichiro Hayakawaa, Hideo Kigoshi*a
a Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan
Fax: +81(29)8534313; e-Mail: kigoshi@chem.tsukuba.ac.jp;
b Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Okubo-3, Tsukuba 300-2611, Japan
Fax: +81(29)8772029; e-Mail: takashi_yoshizumi@merck.com;
Further Information

Publication History

Received 4 November 2008
Publication Date:
06 March 2009 (online)

Abstract

Practical syntheses of enantiomerically pure key intermediates of opioid receptor-like 1 (ORL1) antagonists are described. Our synthetic methodology features the preparation of multigram quantities of seven-membered key intermediate (-)-3 and six-membered one (-)-4 without the use of toxic tin reagents. In the case of (-)-3, the key step involved diastereoselective reduction using a sterically hindered reducing reagent. Our methodology allows for facile scale-up to afford the products in multigram quantities [in the case of (-)-4, >100-g quantities). These convenient approaches facilitate structure-activity relationship studies including in vivo cardiovascular adverse effects.

    References

  • 1a Mollereau C. Parmentier M. Mailleux P. Butour J. Moisand C. Chalon P. Caput D. Vassart G. Meunier J.-C. FEBS Lett.  1994,  341:  33 
  • 1b Fukuda K. Kato S. Mori K. Nishi M. Takeshima H. Iwabe N. Miyata T. Houtani T. Sugimoto T. FEBS Lett.  1994,  343:  42 
  • 1c Chen Y. Fan Y. Liu J. Mestek A. Tian M. Kozak CA. Yu L. FEBS Lett.  1994,  347:  279 
  • 1d Pan Y.-X. Cheng J. Xu J. Rossi G. Jacobson E. Ryan-Moro J. Brooks AI. Dean GE. Standifer KM. Pasternak GW. Mol. Pharmacol.  1995,  47:  1180 
  • 1e Reinsceid RK. Nothacker H.-P. Bourson A. Ardati A. Henningsen RA. Bunzow JR. Grady DK. Langen H. Monsma FJ. Civelli O. Science  1995,  270:  792 
  • 1f Meunier J.-C. Mollereau C. Toll L. Suaudeu C. Moisand C. Alvinerie P. Butour J.-L. Guillemot J.-C. Ferrara P. Monsarrat B. Mazarguil H. Vassart G. Parmentier M. Constentin J. Nature  1995,  377:  532 
  • 2a Mogil JS. Grisel JE. Reinscheid RK. Civelli O. Belknap JK. Grandy DK. Neuroscience  1996,  75:  333 
  • 2b Manabe T. Noda Y. Mamiya T. Katagiri H. Houtani T. Nishi M. Noda T. Takahashi T. Sugimoto T. Nabeshima T. Takeshima H. Nature (London)  1998,  394:  577 
  • 2c Jenck F. Moreau J.-L. Martin JR. Kilpatrick GJ. Reinscheid RK. Monsma FJ. Nothacker H.-P. Civelli O. Proc. Natl. Acad. Sci. U.S.A.  1997,  94:  14854 
  • 2d Champion HC. Katwitz PJ. Life Sci.  1997,  60:  241 
  • 2e Gumusel B. Hao Q. Hyman A. Chang J.-K. Kapusta DR. Lippton H. Life Sci.  1997,  60:  141 
  • Reviews:
  • 3a Chiou L.-C. Liao Y.-Y. Fan P.-C. Kuo P.-H. Wang C.-H. Riemer C. Prinssen EP. Curr. Drug Targets  2007,  8:  117 
  • 3b Bignan GC. Connolly PJ. Middleton S. Expert Opin. Ther. Patents  2005,  15:  357 
  • 3c Zaveri N. Life Sci.  2003,  73:  663 
  • 3d Ronzoni S. Peretto I. Giardina GAM. Expert Opin. Ther. Patents  2001,  11:  525 
  • 4 Yoshizumi T. Takahashi H. Miyazoe H. Sugimoto Y. Tsujita T. Kato T. Ito H. Kawamoto H. Hirayama M. Ichikawa D. Azuma-Kanoh T. Ozaki S. Shibata Y. Tani T. Chiba M. Ishii Y. Okuda S. Tadano K. Fukuroda T. Okamoto O. Ohta H. J. Med. Chem.  2008,  51:  4021 
  • 5a Yoshizumi T. Miyazoe H. Sugimoto Y. Takahashi H. Okamoto O. Synthesis  2005,  1593 
  • 5b Takahashi H, Sugimoto Y, Yoshizumi T, Kato T, Asai M, and Miyazoe H. inventors; WO  2005085228. 
  • 6 Faull AW. Brewster AG. Brown GR. Smithers MJ. Jackson R. J. Med. Chem.  1995,  38:  686 
  • 7 Evans DA. Urpi F. Somers TC. Clark JS. Bilodeau MT. J. Am. Chem. Soc.  1990,  112:  8215 
  • 9 Schmid G. Fukuyama T. Akasaka K. Kishi Y. J. Am. Chem. Soc.  1979,  101:  260 
  • 10a Shorey BJ. Lee V. Baldwin JE. Tetrahedron  2007,  63:  5587 
  • 10b Kiehne U. Bunzen J. Lützen A. Synthesis  2007,  1061 
  • 10c Kaiser EM. Petty JD. Synthesis  1975,  705 
  • Reviews:
  • 11a Tsuji J. Palladium Reagent and Catalysts. Innovation in Organic Synthesis   John Wiley; New York: 1995. 
  • 11b Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 11c de Meijere A. Meyer FE. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 
  • 12 Shibata I. Baba A. Curr. Org. Chem.  2002,  6:  665 
  • 14 Abbiati G. Arcadi A. Bianchi G. Giuseppe SD. Marinelli F. Rossi E. J. Org. Chem.  2003,  68:  6959 
  • 16 Sime JT. Barnes RD. Elson SW. Jarvest RL. O’Toole KJ. J. Chem. Soc., Perkin Trans. 1  1992,  1653 ; although (S)-enriched samples, {[α]D -24.4 (c 2.67, CHCl3)} of 21 and {[α]D +3.2 (c 4.0, CHCl3)} of methyl 2-[(benz-yloxy)methyl]pent-4-enoate, were prepared, the ee values were not reported
8

¹H NMR and RP-HPLC analyses of the reaction mixture indicated that the diastereoselectivity was >99:1.

13

The most stable conformer was investigated at the B3LYP/6-31G* level. All calculations were performed with the package SPARTAN’ 06 (Wavefunction, Inc. Irvine, CA).

15

This levorotatory optical rotation for the (R)-isomer {[α]D ²6 -6.3 (c 1.00, CHCl3)} was not in agreement with the reported data for the (S)-isomer {[α]D -24.4 (c 2.67, CHCl3)}.¹6 However, the levorotatory optical rotation of the corresponding ester, methyl (2R)-2-[(benzyloxy)meth­-yl]pent-4-enoate {[α]D ²4 -5.9 (c 4.0, CHCl3)}, which we prepared from (R)-21, was reasonable, compared to the dextrorotatory optical rotation of the (S)-isomer {[α]D +3.2 (c 4.0, CHCl3)}.¹6