Synlett 2009(5): 747-750  
DOI: 10.1055/s-0028-1087950
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel l-Tartaric Acid Derived Pyrrolidinium Cations for the Synthesis of Chiral Ionic Liquids

Marco Bonanni, Gianluca Soldaini, Cristina Faggi, Andrea Goti, Francesca Cardona*
Dipartimento di Chimica Organica ‘Ugo Schiff’, HeteroBioLab, Università di Firenze, Associated with INSTM and ICCOM-C.N.R., Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
Fax: +39(055)4573531; e-Mail: francesca.cardona@unifi.it;
Further Information

Publication History

Received 27 November 2008
Publication Date:
24 February 2009 (online)

Abstract

Novel pyrrolidinium salts based on l-(+)-tartaric acid were designed and synthesized in very good yields with a simple and practical strategy. Twelve new chiral ionic potential task-­specific catalysts, two of which are room-temperature chiral ionic liquids (RTCIL), were obtained, and their properties are discussed.

    References and Notes

  • For reviews on ionic liquids (IL), see:
  • 1a Seddon KR. J. Chem. Technol. Biotechnol.  1997,  68:  351 
  • 1b Welton T. Chem. Rev.  1999,  99:  2071 
  • 1c Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 1d Sheldon R. Chem. Commun.  2001,  2399 
  • 1e Rogers RD. Seddon KR. Volkov S. Green Industrial Applications of Ionic Liquids   Kluwer Academic; Drodrecht: 2002. 
  • 1f Wasserscheid P. Ionic Liquids in Synthesis   Wiley-Interscience; New York: 2003. 
  • 1g Jain N. Kumar A. Chauhan S. Chauhan SMS. Tetrahedron  2005,  61:  1015 
  • 1h Muzart J. Adv. Synth. Catal.  2006,  348:  275 
  • For reviews on the synthesis and applications of chiral ionic liquids (CIL), see:
  • 2a Baudequin C. Baudoux J. Levillain J. Cahard D. Gaumont A.-C. Plaquevent J.-C. Tetrahedron: Asymmetry  2003,  14:  3081 
  • 2b Baudequin C. Brégeon D. Levillain J. Guillen F. Plaquevent J.-C. Gaumont A.-C. Tetrahedron: Asymmetry  2005,  16:  3921 
  • 2c Ding J. Armstrong DW. Chirality  2005,  17:  281 
  • 2d Winkel A. Reddy PVG. Wilhelm R. Synthesis  2008,  999 
  • 2e Bica K. Gaertner P. Eur. J. Org. Chem.  2008,  3235 
  • 2f Plaquevent J.-C. Levillain J. Guillen F. Malhiac C. Gaumont A.-C. Chem. Rev.  2008,  108:  5035 
  • See, for example:
  • 3a Gausepohl R. Buskens P. Kleinen J. Bruckmann A. Lehmann CW. Klankermayer J. Leitner W. Angew. Chem. Int. Ed.  2006,  45:  3689 
  • 3b Malhotra SV. Wang Y. Tetrahedron: Asymmetry  2006,  17:  1032 
  • 3c Schmitkamp M. Chen D. Leitner W. Klankermayer J. Franciò G. Chem. Commun.  2007,  4012 
  • 3d Chen D. Schmitkamp M. Franciò G. Klankermayer J. Leitner W. Angew. Chem. Int. Ed.  2008,  47:  7339 
  • See, for example:
  • 4a Luo S. Mi Z. Liu S. Xu H. Cheng J.-P. Angew. Chem. Int. Ed.  2006,  45:  3093 
  • 4b Miao W. Chan TH. Adv. Synth. Catal.  2006,  348:  1711 
  • 4c Ni B. Zhang Q. Headley AD. Green Chem.  2007,  9:  737 
  • 5a Imperato G. König B. Chiappe C. Eur. J. Org. Chem.  2007,  1049 
  • 5b Chen X. Li X. Hu A. Wang F. Tetrahedron: Asymmetry  2008,  19:  1 
  • 6a Wang Z. Wang Q. Zhang Y. Bao W. Tetrahedron Lett.  2005,  46:  4657 
  • 6b Machado MY. Dorta R. Synthesis  2005,  2473 
  • 7 Allen CR. Richard PL. Ward AJ. van de Water LGA. Masters AF. Maschmeyer T. Tetrahedron Lett.  2006,  47:  7367 
  • 8a Nagel U. Kinzel E. Andrade J. Prescher G. Chem. Ber.  1986,  119:  3326 
  • 8b Murray RW. Iyanar K. Chen J. Wearing JT. J. Org. Chem.  1996,  61:  8099 
  • 9 Bridgeman E. Cavill JL. Schofield DJ. Wilkins DS. Tomkinson NCO. Tetrahedron Lett.  2005,  46:  8521 
  • 13 Fowler PA. Haines AH. Taylor RJK. Chrystal EJT. Gravestock MB. J. Chem. Soc., Perkin Trans. 1  1993,  1003 
  • 14a Dubreil D. Cleopax J. Loupy A. Carbohydr. Res.  1994,  252:  149 
  • 14b Ikemoto N. Schreiber SL. J. Am. Chem. Soc.  1992,  114:  2524 
  • 23a Wasserscheid P. Bösmann A. Bolm C. Chem. Commun.  2002,  200 
  • 23b Levillain J. Dubant G. Abrunhosa I. Gulea M. Gaumont A.-C. Chem. Commun.  2003,  2914 
  • 23c Clavier H. Boulanger L. Audic N. Toupet L. Mauduit M. Guillemin J.-C. Chem. Commun.  2004,  1224 
  • 23d Patil ML. Rao CVL. Yonezawa K. Takizawa S. Onitsuka K. Sasai H. Org. Lett.  2006,  8:  227 
  • 23e Jurćíik V. Gilani M. Wilhem R. Eur. J. Org. Chem.  2006,  5103 
  • 23f Kumer V. Olsen CE. Schäffer SJC. Parmar VS. Malhotra SV. Org. Lett.  2007,  9:  3905 
10

(3 R ,4 R )-1-Benzyl-3,4-dihydroxy-2,5-pyrrolidinedione (13)
Benzylamine (11 mL, 100 mmol) were added to a 250 mL round-bottom flask containing a suspension of l-(+)-tartaric acid (15.0 g, 100 mmol) in xylene (80 mL). The mixture was refluxed in a Dean-Stark apparatus for 4 h, and H2O (3.6 mL, 200 mmol) was collected. Then the solid was filtered off, washed with acetone, and recrystallized from EtOH (12.5 g, 57 mmol, 57%).
(3 S ,4 S )-1-Benzyl-3,4-pyrrolidinediol (14)
To a cooled (0 ˚C) suspension of LiAlH4 (2.28 g, 60 mmol) in dry THF (100 mL) in a 500 mL round-bottom flask the pyrrolidinedione 13 (4.42 g, 20 mmol) was added portionwise, and the mixture was heated at reflux for 12 h. The mixture was then cooled to 0 ˚C, and a sat. solution of Na2SO4 was added until no gas evolution was observed, then additional anhyd Na2SO4 was added, and the mixture was filtered through Celite washing with EtOAc. Evaporation of the solvent yielded a white solid (1.97 g, 10.2 mmol, 51%). Spectral data were identical to those reported in the literature, see ref. 9.

11

This two-step procedure has been reported to give higher yields. However, in our hands, these yields were not reproducible, and we introduced some slight modifications to render the synthesis reliable when extended to a multigram scale.

12

General Procedure for Quaternization under Conventional Heating
In a round-bottom flask the pyrrolidinediol 14 and alkyl or benzyl bromide (1.5 equiv) were suspended in MeCN. The mixture was heated at 90 ˚C until disappearance of the starting material (TLC control). The reaction mixture was cooled at 0 ˚C, and Et2O was added to crystallize the pure product as a white solid.
General Procedure for Quaternization under Microwave Heating
In a microwave reactor, the pyrrolidinediol 14 and alkyl or benzyl bromide (1.5 equiv) were suspended in MeCN. The reaction was carried out at 90 ˚C, 150 W for 10 min (TLC control), then the reaction mixture was cooled to 0 ˚C, and the pure product crystallizes as a white solid.

15

Crystal Data for 1
MW = 364.3, trigonal, space group P31, Z = 3, D c = 1.46, a = b = 10.686 (1) Å, c = 12.580 (1) Å, α = β = 90˚, γ = 120˚, V = 1244.1 (2) ų. The X-ray CIF file for this structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC), deposition number 710820.

16

Crystal Data for 5
MW = 544.5, orthorhombic, space group P212121, Z = 4, D c = 1.37, a = 9.767 (1) Å, b = 9.805 (1) Å, c = 27.605 (1) Å, α = β = γ = 90˚, V = 2643.6 (4) ų. The X-ray CIF file for this structure has been deposited at the CCDC, deposition number 710821.

17

Anion Exchange (Procedure A)
In a round-bottom flask the pyrrolidinium bromide 1 or 5
(1-5 mmol) were suspended in H2O-EtOAc (1:1), then the appropriate potassium or lithium salt was added. After 5 min the two phases became limpid, and the reaction was finished. The organic phase was separated and dried with anhyd Na2SO4. Solvent evaporation gave the pure product.

18

Upon addition of a slight excess of AgNO3 the solution became yellow due to formation of Ag2CrO4.

19

Anion Exchange (Procedure B) In a round-bottom flask the pyrrolidinium bromide 9 was suspended in H2O, then the appropriate potassium or lithium salt was added. The mixture was left to react overnight at r.t., and the formation of a pale yellow oil, insoluble in H2O, was observed. Ethyl acetate was then added. The organic phase was separated and dried with anhyd Na2SO4. Solvent evaporation gave the pure product.

20

Data for Ionic Liquid 8
Pale yellow viscous liquid. ¹H NMR (400 MHz, CDCl3): δ = 7.47-7.43 (m, 10 H), 7.35-7.32 (m, 6 H), 7.22-7.19 (m, 4 H), 4.73 (A part of an AB system, J = 13.1 Hz, 2 H), 4.63 (B part of an AB system, J = 13.1 Hz, 2 H), 4.46 (A part of an AB system, J = 11.9 Hz, 2 H), 4.42 (B part of an AB system, J = 11.9 Hz, 2 H), 4.24 (br s, 2 H), 3.85 (dd, J = 13.5, 5.6 Hz, 2 H), 3.71 (dd, J = 13.5, 2.6 Hz, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 135.9 (s, 2 C), 133.3 (d, 4 C), 131.0 (d, 2 C), 129.4 (d, 4 C), 128.5 (d, 4 C), 128.3 (d, 2 C), 127.9 (d, 4 C), 126.6 (s, 2 C), 119.9 (q, 2 C, CF3, J = 319.9 Hz), 80.2 (d, 2 C), 72.3 (t, 2 C), 66.9 (t, 2 C), 60.8 (t, 2 C). ¹9F NMR (188 MHz, acetone-d 6,): δ = -79.9 (s). IR (CDCl3): 3090 (w), 3068 (m), 3034 (m), 2923 (w), 2872 (w), 2260 (m), 1497 (m), 1456 (s), 1350 (s), 1199 (s), 1134 (s), 1059 (s) cm. MS: m/z (%) = 464 (0.4), 160 (9), 120 (19), 91 (100), 69 (46), 41 (52). Anal. Calcd for C34H34F6N2O6S2: C, 54.83; H, 4.60; N, 3.76. Found: C, 54.82; H, 4.86; N, 3.86. [α]D ²³ +0.9 (c 1.00, CH2Cl2).

21

Data for Ionic Liquid 12
Pale yellow viscous liquid. ¹H NMR (400 MHz, CDCl3): δ = 7.51-7.41 (m, 5 H), 4.66-4.53 (m, 4 H), 4.17 (br s, 1 H), 4.09 (dd, J = 13.1, 4.0 Hz, 1 H), 3.98 (br s, 1 H), 3.79 (d, J = 12.8 Hz, 1 H), 3.73 (dd, J = 12.8, 4.0 Hz, 1 H), 3.37 (d, J = 13.1 Hz, 1 H), 3.30-3.15 (m, 2 H), 1.95-1.84 (m, 2 H), 1.32-1.25 (m, 18 H), 0.87 (t, J = 6.8 Hz, 3 H). ¹³C NMR (50 MHz, CDCl3): δ = 132.1 (d, 2 C), 130.9 (d, 1 C), 129.4 (d, 2 C), 127.4 (s, 1 C), 119.5 (q, 2 C, CF3, J = 318.7 Hz), 75.8 (d, 1 C), 75.5 (d, 1 C), 68.6 (t, 1 C), 67.7 (t, 1 C), 66.9 (t, 1 C), 63.8 (t, 1 C), 31.9 (t, 1 C), 29.6 (t, 2 C), 29.5 (t, 1 C), 29.4 (t, 1 C), 29.3 (t, 1 C), 29.0 (t, 1 C), 26.2 (t, 1 C), 23.7 (t, 1 C), 22.8 (t, 1 C), 14.2 (q, 1 C). ¹9F NMR (188 MHz, acetone-d 6): δ =
-79.8 (s, 6 F). IR (CHCl3): 3507 (m), 3033 (w), 2927 (m), 2855 (w), 1457 (w), 1349 (s), 1192 (s), 1133 (m), 1059 (m) cm. MS: m/z (%) = 362 (35), 288 (12), 270 (11), 206 (6), 193 (7), 134 (5), 116 (100), 91 (45), 69 (11), 55 (15). Anal. Calcd for C25H40F6N2O6S2: C, 46.72; H, 6.27; N, 4.36. Found: C, 46.70; H, 6.55; N, 4.35. [α]D ²² -5.1 (c 0.985, MeOH).

22

Data for Ionic Liquid 4
Pale yellow solid; mp 50-53 ˚C. ¹H NMR (200 MHz, CD3OD): δ = 7.63-7.50 (m, 10 H), 4.89 (br s, 2 H), 4.71 (br s, 2 H), 4.32-4.24 (m, 2 H), 3.87 (dd, J = 12.5, 5.1 Hz, 2 H), 3.60 (dd, J = 13.2, 1.5 Hz, 2 H). ¹³C NMR (50 MHz, CDCl3): δ = 133.2 (d, 4 C), 131.1 (d, 2 C), 129.5 (d, 4 C), 127.1 (s, 2 C), 119.6 (q, 2 C, CF3, J = 320.5 Hz), 76.1 (d, 2 C), 67.4 (t, 2 C), 63.3 (t, 2 C). ¹9F NMR (188 MHz, acetone-d 6): δ =
-79.9 (s). IR (CH2Cl2): 3593 (w), 3502 (m), 3059 (w), 3032 (w), 2923 (w), 1494 (w), 1457 (w), 1351 (s), 1199 (s), 1134 (m), 1060 (m) cm. MS: m/z (%) = 284 (22), 210 (7), 193 (6), 133 (11), 120 (11), 91 (100), 65 (25), 51 (7). Anal. Calcd for C20H22F6N2O6S2: C, 42.55; H, 3.93; N, 4.96. Found: C, 42.36; H, 4.12; N, 4.95. [α]D ²³ -24.5 (c 1.01, CH2Cl2).