References and Notes
<A NAME="RU11108ST-1">1</A>
Gennis RB.
Biomembranes:
Molecular Structure and Function
Springer;
New
York:
1989.
<A NAME="RU11108ST-2">2</A>
Eibl H.
Chem.
Phys. Lipids
1980,
26:
405
<A NAME="RU11108ST-3">3</A>
Beck A.
Heissler D.
Duportail G.
Tetrahedron
1991,
47:
1459
<A NAME="RU11108ST-4">4</A>
Paltauf F.
Hermetter A.
Prog. Lipid Res.
1994,
33:
239
<A NAME="RU11108ST-5">5</A>
Martin SF.
Josey JA.
Wong Y.-L.
Dean DW.
J. Org. Chem.
1994,
59:
4805 ; and references cited therein
<A NAME="RU11108ST-6">6</A>
Kornberg RD.
McConnell HM.
Biochemistry
1971,
10:
1111
<A NAME="RU11108ST-7">7</A>
Nicolussi A.
Massari S.
Colonna R.
Biochemistry
1982,
21:
2134
<A NAME="RU11108ST-8">8</A>
Tornabebe TG.
Langworthy TA.
Science
1979,
203:
51
<A NAME="RU11108ST-9">9</A>
De Rosa M.
Gambacorta A.
Gliozzi A.
Microbiol.
Rev.
1986,
50:
70
<A NAME="RU11108ST-10">10</A>
Miyawaki K.
Takagi T.
Shibakami M.
Synlett
2002,
1326
<A NAME="RU11108ST-11">11</A>
Nakamura M.
Goto R.
Tadokoro T.
Shibakami M.
J. Colloid Interface
Sci.
2007,
310:
630
<A NAME="RU11108ST-12">12</A>
Miyawaki K.
Goto R.
Shibakami M.
Chem.
Lett.
2003,
32:
1170
<A NAME="RU11108ST-13">13</A>
Shibakami M.
Tsuihiji H.
Miyoshi S.
Nakamura M.
Goto R.
Mitaku S.
Sonoyama M.
Biosci.
Biotechnol. Biochem.
2008,
72:
1623
<A NAME="RU11108ST-14">14</A>
Lewis RNAH.
McEthaney RN. In The
Structure of Biological Membranes
2nd ed.:
Yeagle PL.
CRC Press;
Boca
Raton:
2004.
p.66
<A NAME="RU11108ST-15A">15a</A>
Koga Y.
Morii H.
Biosci.,
Biotechnol., Biochem.
2005,
69:
2019
<A NAME="RU11108ST-15B">15b</A>
Blöcher D.
Gutermann R.
Henkel B.
Ring K.
Biochim. Biophys.
Acta
1984,
778:
74
<A NAME="RU11108ST-16">16</A> For example, see:
Eguchi T.
Arakawa K.
Terachi T.
Kakinuma K.
J. Org.
Chem.
1997,
62:
1924
<A NAME="RU11108ST-17">17</A>
Selected Physical
Data of 9
¹H NMR (400 MHz, CDCl3): δ = 1.30
(12 H, br s), 1.36 (6 H, s), 1.42 (6 H, s), 1.52 (8 H, quint, J = 5.4 Hz),
1.96-2.02 (8 H, m), 1.58 (8 H, br m), 2.26 (8 H, br m),
3.39-3.53 (8 H, m), 3.72 (2 H, dd, J = 8.2,
6.4 Hz), 4.05 (2 H, dd, J = 8.2,
6.4 Hz), 4.26 (2 H, quint, J = 6.0
Hz), 4.69 (4 H, br s). ESI-MS (TOF): m/z = 694 [M + Na+],
672 [M + H+].
<A NAME="RU11108ST-18">18</A>
Selected Physical
Data of 10
¹H NMR (400 MHz, CDCl3): δ = 1.32
(12 H, br s), 1.42 (4 H, quint, J = 7.2
Hz), 1.53 (8 H, quint, J = 3.4
Hz), 1.59 (4 H, quint, J = 7.0
Hz), 1.98-2.02 (8 H, br s), 2.28 (4 H, br m), 3.45-3.56
(8 H, m), 3.66 (2 H, dd, J = 11.4,
5.0 Hz), 3.73 (2 H, dd, J = 11.5,
4.1 Hz), 3.87 (2 H, quint, J = 4.7
Hz), 4.71 (4 H, br s). ESI-MS (TOF): m/z = 614 [M + Na+],
591 [M + H+].
<A NAME="RU11108ST-19">19</A>
Selected Physical
Data of 11
¹H NMR (400 MHz, CDCl3): δ = 1.28
(12 H, br s), 1.40 (4 H, quint, J = 7.1
Hz), 1.51 (8 H, quint, J = 4.2
Hz), 1.96-1.99 (8 H, br m), 2.25 (4 H, br m), 2.42 (2 H,
d, J = 4.6
Hz), 3.19 (4 H, qd, J = 7.6,
5.4 Hz), 3.40-3.54 (8 H, m), 3.94 (2 H, sext, J = 5.1 Hz),
4.69 (4 H, br m), 7.22 (6 H, t, J = 7.3 Hz),
7.29 (12 H, t, J = 7.3
Hz), 7.42 (12 H, d, J = 7.3
Hz). ESI-MS (TOF): m/z = 1098 [M + Na+].
<A NAME="RU11108ST-20">20</A>
Procedure for
the Preparation of 13
To a solution of Cu(OAc)2 (314
mg, 1.73 mmol) in refluxing pyridine (100 mL), a solution of 12 (257 mg, 0.173 mmol) in pyridine (10
mL) was added dropwise with a syringe pump over 5.5 h. The solution
gradually turned from blue to dark green. After completion of the
addition the solution was heated at the same temperature for 1 h.
The mixture was cooled to r.t. and evaporated to give a residue,
which was purified on a silica gel column chromatography eluted
with hexane-EtOAc (10:1) to give 13 as
a yellow oil; yield 157 mg (61%).
¹H
NMR (400 MHz, CDCl3): δ = 1.28 (24
H, br s), 1.39 (8 H, br m), 1.51-1.57 (16 H, br m), 1.96-2.01
(16 H, m), 2.28 (br s, 8 H), 3.13-3.20 (4 H, br m), 3.39
(4 H, br t, J = 6.9
Hz), 3.45-3.58 (10 H, m), 4.68 (8 H, br s), 7.20 (6 H,
t, J = 7.1 Hz),
7.27 (12 H, t, J = 7.3
Hz), 7.45 (12 H, d, J = 7.8
Hz). ESI-MS (TOF): m/z = 1505 [M + Na+].
<A NAME="RU11108ST-21">21</A>
The sequence from 7 and
glycerol moiety to 12 was altered from
the one we previously reported for preparing a straight-chain analogue 1.¹0,¹¹ At
the step of the connection of chain moiety and protected glycerol
in the previous study, we used 1-trityl-3-p-methoxybenzoyl-sn-glycerol, which was prepared by starting
from 1,2-isopropylidene-sn-glycerol in three
steps. Through this modification, several protection-deprotection
steps could be omitted. The order in which the chains was introduced
into the glycerol moiety was also changed. This change would cause
an increase in the steric hindrance around the secondary hydroxy
groups during the Williamson reaction sequence; however, the reaction proceeded
without difficulties even though the yield of 12 was
somewhat lower.
<A NAME="RU11108ST-22">22</A>
Purification of 2 was
conduced on an LC-908 instrument (Japan Analytical Industries) equipped
with a JAIGEL-GS310 column [eluent, CHCl3-MeOH = 1:2
(v/v)].
Colorless gummy oil. ¹H
NMR (400 MHz, CDCl3-CD3OD = 2:1): δ = 1.30
(28 H, br s), 1.41 (12 H, br s), 1.52 (20 H, br s), 1.97-2.01
(16 H, t, J = 7.6
Hz), 2.27 (8 H, br m), 3.23 (18 H, s), 3.38-3.49 (6 H,
m), 3.55-3.61 (12 H, m), 3.88 (4 H, br s), 4.25 (4 H, br
s), 4.70 (8 H, br s). ESI-MS (TOF): m/z = 1350 [M + Na+],
1328 [M + H+].
<A NAME="RU11108ST-23">23</A>
Schubert T.
Seitz PC.
Schneck E.
Nakamura M.
Shibakami M.
Funari SS.
Konovalov O.
Tanaka M.
J. Phys. Chem. B
2008,
112:
10041